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Abstract
We consider a class of differential-algebraic equations (DAEs) defined by
analytic nonlinearities and study its singular solutions. The main assumption
used is that the linearization of the DAE represents a Kronecker index-2 matrix
pencil and that the constraint manifold has a quadratic fold along its singularity.

From these assumptions we obtain a normal form for the DAE where the
presence of the singularity and its effects on the dynamics of the problem are
made explicit in the form of a quasi-linear differential equation. Subsequently,
two distinct types of singular points are identified through which there pass
exactly two analytic solutions: pseudo-nodes and pseudo-saddles. We also
demonstrate that a singular point called a pseudo-node supports an uncountable
infinity of solutions which are not analytic in general.

Moreover, akin to known results in the literature for DAEs with singular
equilibria, a degenerate singularity is found through which there passes one
analytic solution such that the singular point in question is contained within a
quasi-invariant manifold of solutions. We call this type of singularity a pseudo-
centre and it provides not only a manifold of solutions which intersects the
singularity, but also a local flow on that manifold which solves the DAE.

Mathematics Subject Classification:

1. Introduction

Consider the differential-algebraic equation (DAE)

ẋ = f (x, y), (1)

g(x, y) = 0, (2)

0951-7715/04/010001+27$30.00 © 2004 IOP Publishing Ltd and LMS Publishing Ltd Printed in the UK 1

http://stacks.iop.org/no/17
prathap.tex
Editor: Mahe



2 R E Beardmore et al

where x ∈ R
n and n � 2 throughout this paper, y ∈ R

m, f : U → R
n and g : U → R

m are
analytic in an open neighbourhood, U , of (0, 0) in R

n+m.
Let us begin by defining some basic terminology associated with (1) and (2). The set

C := g−1(0) ∩ U is the constraint manifold for (1) and (2) and the singularity is defined by
S := {(x, y) ∈ C: det(dyg(x, y)) = 0}. A solution of (1) and (2) on an interval I ⊆ R

(so that I is a connected set containing at least two points) is considered to be a function
(x(·), y(·)) ∈ C1(I, R

n)×C0(I, R
m) with this differential equation satisfied everywhere on I

and the solution is said to be singular if there is a t ∈ I such that (x(t), y(t)) ∈ S. With regard
to the term singular and its meaning in the context of (1) and (2), we understand a DAE to be
singular at (x, y) ∈ C (and (x, y) is said to be a singular point) when the rank of dyg(x, y) is
not constant in any neighbourhood of (x, y). Precisely, there is a sequence (xn, yn) ⊂ C such
that rank(dyg(xn, yn)) �= rank(dyg(x, y)) and yet (xn, yn) → (x, y).

A trajectory of (1) and (2) is a mapping z : I → C which solves (1) and (2) and the orbit
corresponding to this trajectory is {z(t): t ∈ I }. A point z0 ∈ C is said to support a solution
of (1) and (2) if it is contained in some orbit, in this instance we may also say that a given
trajectory passes through z0.

The behaviour of solutions of the ordinary differential equation

ż = F(z), (3)

in the neighbourhood of a given point z0, where F has a given degree of regularity, is well-
known. Any solution z(t) has the same degree of regularity as F and the local geometric
properties of the flow induced by (3) are given by the flow-box theorem if F(z0) �= 0, and by
the description of the invariant (centre, stable and unstable) manifolds if F(z0) = 0, provided
that the linearization dF(z0) has certain spectral properties.

Such a full description of the behaviour of a DAE in the vicinity of a singular point does
not yet exist in the literature and a recent survey of the methods of analysis and areas of
application of singular DAEs is to be found in Rabier and Rheinboldt (2002, chapter VII).
Similarly, in contrast with ordinary differential equations, it is not the case that solutions of
a DAE necessarily respect the regularity of the functions defining that DAE, and non-smooth
solutions of DAEs are studied in Rabier and Rheinboldt (1995). We shall seek to address some
of the problems surrounding the regularity of solutions of (1) and (2) in this paper.

This work may be considered an extension of Venkatasubramanian et al (1995) whose
authors observed that singular points could support smooth solutions and that invariant
manifolds of smooth solutions could intersect the singularity of a DAE. Other studies which
complement the findings of this paper can be found in Takens (1976), Rabier and Rheinboldt
(1994), von Sosen (1994), Thomas (1997), Marszalek and Campbell (1997, 1999), Ren and
Spence (1999), Bruce and Tari (2000), Riaza et al (2000), Riaza and Zufiria (2001), Sotomayor
and Zhitomirskii (2001), all of which consider some aspect of singular DAEs. Many of the
papers are concerned with either the behaviour of solutions near impasse points, or with the
construction of a normal form for (1) and (2). This is usually a quasi-linear differential
equation whose trajectories can be mapped to trajectories of (1) and (2); this paper is in the
latter category and the preprint (Reißig and Boche 2001) gives a brief survey of results for
DAEs near singular points obtained using a normal form approach. Other techniques have
of course been employed in the literature and in (Seikkalä and Heikkila 1997) the authors
study a class of implicit differential equations using comparison principles which permits the
treatment of certain discontinuities.

The work of Venkatasubramanian et al cited earlier has been extended in Beardmore and
Laister (2002), which considered how the singular solutions of (1) and (2) behave in the vicinity
of a singular equilibrium, defined as follows.
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Definition 1. A singular equilibrium of (1) and (2) is a point (x, y) ∈ S such that f (x, y) = 0.

Trivially, (1) and (2) admits a constant solution through a singular equilibrium and it was
shown in Beardmore and Laister (2002), subject to further assumptions, that one can find two
analytic solutions whose initial datum is that singular point. An elementary example of this is

ẋ = y, x2 + y2 = 1, (4)

which admits the two solutions

x(t) = 1, y(t) = 0 and x(t) = cos(t), y(t) = − sin(t),

both of which satisfy x(0) = 1 and y(0) = 0. If we perturb (4) and instead consider, for
instance,

ẋ = −ε + y, x2 + y2 = 1, (5)

which has the effect of taking the equilibrium point away from the singularity, then the only
singular solutions of (5) terminate at impasse points. A thorough description of the nature of
impasse points is given in Rabier and Rheinboldt (1994), and the basic property of an impasse
point is that two solutions terminate at this singular point in either forwards or backwards time
and that the derivative of the solution blows up at this point.

Less immediately, obvious perhaps, is that (4) admits Lipschitz solutions which can be
obtained by concatenating the smooth solutions together:

(X(t), Y (t)) :=
{
(1, 0), t � 0,

(cos(t), − sin(t)), t > 0,

is one such example. For higher-order problems one does not need singular equilibria in order
to obtain Lipschitz solutions. To see this, consider the DAE

−ü = 6v, (6)

u = v − v3. (7)

Define two functions v+(t) = (1/
√

3)+ t and v−(t) = (1/
√

3)− t , and then set u± := v± −v3
±.

The pairs (u+, v+) and (u−, v−) are both analytic solutions of (6) and (7) that have the initial
condition (u(0), u̇(0), v(0)) = ((1 − √

3)/
√

3, 0, 1/
√

3), which is not a singular equilibrium
point of (6) and (7). However, by concatenating the two given solutions (u+, u̇+, v+) and
(u−, u̇−, v−) at the point t = 0 one can again construct Lipschitz solutions of (6) and (7).
DAEs of the form (6) and (7) are of interest as they arise as the steady-state problem for the
class of reaction–diffusion equation

ut = uxx + λf (u, v), vt = g(u, v), (8)

where λ is a bifurcation parameter. The bifurcation structure of the steady-state problem of
(8) when (u, v) = (0, 0) is a singular equilibrium (so that f (0, 0) = g(0, 0) = gv(0, 0) = 0)
has been studied in (Beardmore and Laister 2003).

Let us continue with the following definition which is central to the development of this
paper.

Definition 2. Suppose that (x, y) ∈ S satisfies

(A1) N(dyg(x, y)) = 〈k〉, kTk = 1 and N(dyg(x, y)T) = 〈u〉, uTu = 1,
(A2) dxg(x, y)dyf (x, y)k �∈ R(dyg(x, y)),
(A3) d2

yyg(x, y)[k, k] �∈ R(dyg(x, y)) and
(A4) d(f × g)(x, y) ∈ GL(Rn+m).

Then (x, y) is called a folded singular point for (1) and (2). If, in addition to (A1)–(A4), the
condition

(A5) dxg(x, y)f (x, y) ∈ R(dyg(x, y)),
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Figure 1. Invariant manifolds of (1) and (2) near a singular equilibrium (these are described in
detail in Beardmore and Laister (2002)).

is satisfied, then (x, y) is said to be a pseudo-equilibrium point for (1) and (2). If f (x, y) �= 0
holds, in addition to (A1)–(A5), then (x, y) will be called a proper pseudo-equilibrium point
and we shall denote by P ⊂ S the set of pseudo-equilibria of (1) and (2).

In Beardmore and Laister (2002) the nature of solutions of (1) and (2) at a singular
equilibrium was analysed, subject to the restriction that it is also a pseudo-equilibrium point
according to definition 2. The results of Beardmore and Laister (2002) are summarized in
figure 1 where C is represented by R

3 which is divided into two components by the singularity
S, which is itself divided into two components by P. In figure 1(a) there is at least one manifold
WR (and possibly more) on which (1) and (2), subject to the stated assumptions, induces a
local flow. Note that WR ∩ S = P so that elements of P are not impasse points, whereas points
on S\P are impasse points. There is a further one-dimensional invariant manifold (W�(0, 0))
which contains (0, 0) and which, subject to a further non-degeneracy requirement, has non-
empty intersection with both components of C\S. Associated with each p ∈ P there are also
invariant manifolds W�(p) which intersect both components of C\S. Figure 1(c) illustrates
the fact that the existence of non-unique invariant manifolds (WR

1 and WR
2 from figure 1(a))

will ensure that the stable set associated with the equilibrium point (0, 0) does not have a
manifold structure: certain subsets of the stable (WRs) and unstable (WRu) sets are illustrated.
Similarly, figure 1(d) depicts the uniqueness of solutions of (1) and (2) breaking down at a
point q ∈ P with a resulting continuum of solutions, however (Beardmore and Laister 2002)
proffers no detailed explanation as to why this is the case.

Subsequently, throughout the remainder of the paper we shall be concerned with the
situation where the point (x, y) = (0, 0) is a proper pseudo-equilibrium point for (1) and (2).
We shall show that one can associate a real, 2 ×2 matrix Q with this pseudo-equilibrium point
whose eigenvalues (λ1 and λ2) determine the nature of the solutions of (1) and (2) through
(0, 0) as follows:

(i) (Pseudo-focus) If λ1 is complex (and therefore the conjugate of λ2) with non-zero real
and imaginary parts then there are no solutions.

(ii) (Pseudo-saddle) If the eigenvalues are real and λ1 · λ2 < 0 then there are two Lipschitz
and two analytic solutions.

(iii) (Pseudo-node) If the eigenvalues are real and λ1 · λ2 > 0 then there are two analytic
solutions and uncountably many solutions in Cρ+1 × Cρ , where ρ is the integer part of
max{λ1/λ2, λ2/λ1}, provided that the latter is not a natural number (the non-resonant
case). If ρ is an integer then C2 × C1 solutions can still be found, provided that λ1 �= λ2.
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(iv) (Pseudo-centre) If the eigenvalues are real and λ1λ2 = 0, λ1 +λ2 �= 0 then, for any k ∈ N,
there is a codimension-1, Ck manifold of solutions of (1) and (2), WR ⊂ C which contains
(0, 0). There is also one analytic solution through (0, 0).

(v) (Degenerate pseudo-centre) If σ(Q) = {0} then no information can be gleaned.

Assumptions (A1)–(A5) have the following interpretations. Assumption (A1) ensures
that there is a non-empty constraint manifold and also ensures that the singularity S is
non-empty. In fact, (A1)–(A4) are sufficient to ensure that S is a codimension-1, analytic
submanifold of C which can be seen directly from the proof of Beardmore and Laister (2002,
lemma 2.1). The simple null-space condition in (A1), along with (A2)–(A4), will allow us to
use a Lyapunov–Schmidt reduction to find an n-dimensional normal form for (1) and (2) near
the point (x, y) = (0, 0). Assumption (A2) ensures that the linearization of (1) and (2) about
(x, y) = (0, 0) is an index-2 DAE of the form

Mż = (f (0, 0), 0) + Lz,

where, here and throughout z := (x, y), M is the natural projection

M : R
n × R

m → R
n × R

m, (x, y) → (x, 0)

and L = d(f × g)(0, 0) where d denotes the derivative. This means that the Kronecker
index of the matrix pencil (M, L) is 2 (from Beardmore (2001, theorem 7)) and L is clearly
non-singular by (A4).

Condition (A5) has a simple interpretation in terms of the existence of smooth solutions
of (1) and (2) as follows. Suppose that (x(t), y(t)) is a differentiable solution with initial
condition (0, 0), differentiating (2) then gives dyg(0, 0)ẏ(0) = −dxg(0, 0)f (0, 0) so that
(A5) must be satisfied if (0, 0) is to support a smooth solution passing through it. We have the
following lemma which indicates precisely the nature of solutions through (0, 0) if (A1)–(A4)
are satisfied but (A5) is not:

Lemma 1.1. Suppose that (x, y) is a folded singular point that is not a pseudo-equilibrium
for (1) and (2), then it is an impasse point.

Proof. This is an application of Rabier and Rheinboldt (1994, theorem 6.1). �

Assumptions (A1)–(A5), in particular (A2), are motivated directly by the singularity-
induced bifurcation theorem of Venkatasubramanian et al (1995) and they are sufficient to
ensure that (x, y) = (0, 0) is an image-singularity (see Sotomayor and Zhitomirskii (2001,
p 569)) for the quasi-linear differential equation obtained from (1) and (2) by differentiating
(2) with respect to t . The classification scheme (i)–(v), devised according to the eigenvalues
λ1 and λ2, is therefore similar to Sotomayor and Zhitomirskii (2001, theorem 3). However, the
latter reference gives no indication of how the eigenvalues are related to the mappings f and g

in (1) and (2), nor does it indicate what happens in the resonant cases of (iv). In addition, the
pseudo-centre from part (iv) of the classification is not covered in either the references cited
earlier.

2. Normal form for folded singular points

We continue with some notation and definitions. A set K ⊂ C is said to be quasi-invariant for
(1) and (2) if for each (x0, y0) ∈ K there exists a solution of (1) and (2), (x(t), y(t)) defined on
I ⊂ R, such that (x(0), y(0)) = (x0, y0) and (x(t), y(t)) ∈ K for all t ∈ I .We use the notion
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of quasi-invariance rather than invariance with regard to solutions of (1) and (2) because of
the presence of the singularity and the subsequent non-uniqueness of solutions. For instance,
equilibria of (4) are quasi-invariant but not invariant.

Let I ⊂ R be an open interval and N a natural number. We shall denote by Cr(I, R
N)

the space of r-times continuously differentiable functions from I to R
N . By W 1,∞(I, R

N) we
mean the space of weakly differentiable functions whose derivative lies in L∞(I, R

N). If a
function u lies in W 1,∞(I, R) then u is absolutely continuous and u(x) − u(y) = ∫ x

y
u′(s) ds,

whence |u(x) − u(y)| � |x − y|‖u‖W 1,∞ , where ‖u‖W 1,∞ = ‖u‖L∞ + ‖u′‖L∞ . It follows that
u is Lipschitz on I .

We use O(n) to denote a function h(·) such that in some closed neighbourhood W ⊂ R
N

containing zero, there is a constant γ such that ‖h(w)‖ � γ ‖w‖n for all w in W . For
0 < x ∈ R, we shall use x� to denote the truncation of x to the nearest integer not greater
than x. If F is any finite set then #F denotes its cardinality.

We use 〈w1, . . . , wm〉 for the linear span of w1, . . . , wm, N(T ) for the null-space of a
linear map T : R

N → R
N and N (T ) = ⋃

k�0 N(T k) denotes the generalized null-space.
Similarly, R(T ) denotes the range of T . If S : R

N → R
N is also a linear map, so that (S, T )

is a matrix pencil on R
N , then σ(S, T ) = {λ ∈ C : det(λS − T ) = 0} is its spectrum; we shall

also write σ(T ) for the spectrum of T .
In order to reduce notational clutter, we shall not distinguish between 2 × 1 and 1 × 2

vectors, so that if for instance S is a 2 × 2 matrix, we may write S · (u, v) to denote the
matrix–vector product which would normally be written as S · (u, v)T.

Let us record the elements of the matrix d(f × g)(0, 0) as follows:

L :=
[
A B

C D

]
:=

[
dxf (0, 0) dyf (0, 0)

dxg(0, 0) dyg(0, 0)

]
(9)

and write L−1 using the block elements A1, B1, C1 and D1 in an analogous fashion:

L−1 :=
[
A1 B1

C1 D1

]
. (10)

This notation for the derivatives of f and g evaluated at the point (x, y) = (0, 0) will be used
throughout the paper. From Beardmore (2001) we have the following useful facts, recalling
the definitions of u and k from (A1).

Lemma 2.1. If (x, y) = (0, 0) is a folded singular point for (1) and (2) and the mappings L

and L−1 are defined according to (9) and (10), respectively, then

N (A1) = 〈Bk〉, N (AT
1 ) = 〈CTu〉, C1Bk = k. (11)

In addition, (M, L) is an index-2 matrix pencil and #σ(M, L) = n − 1.

The proof of lemma 2.1 relies on all of the assumptions in (A1)–(A4) and the facts
contained in (11) will be used throughout the derivation of a normal form for (1) and (2) at a
folded singular point that is to follow. The non-zero constant

ω := uTdxg(0, 0)dyf (0, 0)k = uTCBk (12)

appears at several instants throughout the paper. Define the space

U := 〈CTu〉⊥ ⊂ R
n (13)

and suppose that the linear mappings

PB : U ⊕ 〈Bk〉 → R and PU : U ⊕ 〈Bk〉 → U (14)
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are defined in such a way that w �→ Bk ·PB[w] is the projection of R
n = U ⊕〈Bk〉 onto 〈Bk〉

along U and w �→ PU [w] + Bk · PB[w] is the identity on U ⊕ 〈Bk〉. Specifically, we have
PB[w] = (1/ω)uTCw and PU [w] = (I − (1/ω)uTC)w.

There are several choices for the regularity of solutions that one could make with regard
to (1) and (2) and in this paper we are interested in solutions for which y is at least continuous.
If we impose regularity on a solution of (1) and (2) beyond continuity of y, we can rewrite
(1) and (2) as a quasi-linear ODE in a neighbourhood of a folded singular point, as the following
theorem shows.

Theorem 2.1. Suppose that (x, y) = (0, 0) is a folded singular point for (1) and (2). Then
there is an analytic diffeomorphism χ : B ′ → C ′, where B ′ ⊂ U × R and C ′ ⊂ C are open
neighbourhoods of zero, with the following properties.

There is a linear mapping L0 ∈ GL(U) an element c ∈ U , a pair (f0, f1) ∈ U × R and
γ ∈ R such that the map t �→ (x(t), y(t)) is a solution of (1) and (2) with kTy(·) ∈ W 1,∞(I, R)

if and only if (x(t), y(t)) = χ(α(t), β(t)), where (α, β) is a solution of the quasi-linear ODE

(NF)

{
α̇ = f0 + L0α + F(α, β),

s(α, β)β̇ = f1 + cTα + γβ + G(α, β).

Here, a solution of (NF) means that (α(·), β(·)) ∈ C1(I, U)×W 1,∞(I, R) and (NF) is satisfied
for a.e. t ∈ I . The function F × G : B ′ → U × R is O(2) at zero, the function s : B ′ → R is
analytic,

dαs(0, 0)[v] = − 1

ω
uTd2

xyg(0, 0)[v, k] (15)

for all v ∈ U , moreover

s(0, 0) = 0 and dβs(0, 0) = − 1

ω
uTd2

yyg(0, 0)[k, k] �= 0. (16)

If

� := {(α, β) ∈ B ′: s(α, β) = 0}, (17)

then χ(�) = S ∩ C ′. Also

f0 = PU [f (0, 0)] and f1 = PB[f (0, 0)]. (18)

Proof. By assumptions (A1)–(A4) and lemma 2.1 we may write

x = α + qBk ∈ U ⊕ 〈Bk〉
and

y = r + βk ∈ 〈k〉⊥ ⊕ 〈k〉.
We now proceed as in the proof of Beardmore and Laister (2002, theorem 2.2), using the
implicit function theorem to solve the equation

g(α + qBk, r + βk) = 0 (19)

in some neighbourhood of (x, y) = (0, 0) ∈ R
n+m. This is done by defining a mapping ḡ by

ḡ(α, q, r, β) := g(α + qBk, r + βk), so that

dq,r ḡ(α, q, r, β)[q̄, r̄] = q̄dxg(α, q, r, β)[Bk] + dyg(α, q, r, β)[r̄], (20)

for all q̄ ∈ R and r̄ ∈ 〈k〉⊥. Setting (α, q, r, β) = (0, 0, 0, 0) in (20) we have
dq,r ḡ(0, 0, 0, 0)[q̄, r̄] = q̄CBk + Dr̄ . Assumption (A1) and the fact that CBk �∈ R(D)
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by (A2) ensures that dq,r ḡ(0, 0, 0, 0) is a bijection. Hence (19) can be solved for q = X(α, β)

and r = Y (α, β), where B ′ ⊂ U × R is a neighbourhood of zero and

X : B ′ → R and Y : B ′ → 〈k〉⊥ ⊂ R
m

are analytic functions in this neighbourhood such that X(0, 0) = 0, Y (0, 0) = 0.
Now define

χ(α, β) := (α + X(α, β)Bk, Y (α, β) + βk), (21)

so that χ : B ′ → C and set C ′ = χ(B ′), finally write g(x, y) = Cx + Dy + γ (x, y), where γ

is analytic and O(2) at zero. Let us list the derivatives of the functions X and Y :

(i) dαX(0, 0) = 0, dαY (0, 0) = 0,
(ii) dβX(0, 0) = 0, dβY (0, 0) = 0, (so that χ : B ′ → C ′ is a diffeomorphism satisfying

χ(0, 0) = (0, 0)),
(iii) d2

αβX(0, 0)[v, λ] = −(λ/ω)uTd2
xyg(0, 0)[v, k],

(iv) d2
ββX(0, 0)[µ, λ] = −(µλ/ω)uTd2

yyg(0, 0)[k, k] �= 0,
(v) d2

ppX(0, 0)[v, v′] = −(1/ω)uTd2
xxg(0, 0)[v, v′],

for v, v′ ∈ U, λ, µ ∈ R.
To obtain (i)–(v), note first of all that g(χ(α, β)) ≡ 0 and therefore by differentiating with

respect to α we find

dxg(χ(α, β))[IU + dαX(α, β)[·]Bk] + dyg(χ(α, β))[dαY (α, β)[·]] ≡ 0,

whence

C(IU + dαX(0, 0)[·]Bk) + D(dαY (0, 0)[·]) = 0.

This implies uTC + ωdαX(0, 0)[·] = 0 and subsequently

dαX(0, 0)[v] = − 1

ω
uTCv ≡ 0, ∀v ∈ U = 〈CTu〉⊥.

But then DdαY (0, 0)[v′] = 0 so that dαY (0, 0)[v′] ∈ 〈k〉 and dαY (0, 0)[v′] ∈ 〈k〉⊥ for
all v′ ∈ U by the definition of Y , whence dαY (0, 0)[v′] ≡ 0. This proves (i). Similarly,
differentiating g(χ(α, β)) ≡ 0 with respect to β gives dβX(0, 0)[·]CBk + DdβY (0, 0)[·] = 0
so that from (A2) we obtain dβX(0, 0) = 0 and dβY (0, 0) follows. This is property (ii).

Also,

0 ≡ d2
xxg(χ(α, β))[IU + dαX(α, β)[·]Bk, dβX(α, β)[·]Bk]

+d2
xyg(χ(α, β))[IU + dαX(α, β)[·]Bk, dβY (α, β)[·] + ·k]

+dxg(χ(α, β))[d2
αβX(α, β)[·, ·]Bk]

+d2
yxg(χ(α, β))[dαY (α, β)[·], dβX(α, β)[·]Bk]

+d2
yyg(χ(α, β))[dαY (α, β)[·], k + dβY (α, β)[·]]

+dyg(χ(α, β))[d2
αβY (α, β)[·, ·]]

and therefore

d2
xyg(0, 0)[v, λk] + d2

αβX(0, 0)[v, λ]CBk + Dd2
αβY (0, 0)[v, λ] = 0,

for all (v, λ) ∈ U × R; property (iii) now follows. Properties (iv) and (v) are proven in the
same way.

We now suppose that (x, y) is a solution of (1) and (2) on an interval I ⊂ R with
yTk ∈ W 1,∞(I, R). Since x ∈ C1(I, R

n) and we can define functions α and q via
x = α + qBk ∈ U ⊕ 〈Bk〉 where α = PU [x] and q = PB[x] (with the maps PU and
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PB defined in (14)), it follows that α and q are also C1 functions. Also we can define r and β

via y = r + βk, so it follows that r ∈ W 1,∞ also.
Pre-multiplying (1) and (2) by L−1 we obtain the system

L−1Mż = L−1(f (0, 0), 0)T + z + O(2), (22)

now write (22) in the form

A1ẋ = A1f (0, 0) + x + O(2), (23)

C1ẋ = C1f (0, 0) + y + O(2). (24)

Setting f (0, 0) = f0 + f1Bk ∈ U ⊕ 〈Bk〉, from lemma 2.1 we have

A1f (0, 0) = A1f0, C1f (0, 0) = C1f0 + f1k.

Now let A0 be the invertible map obtained by restricting A1 to its invariant space U :

A0 := A1|U : U → R(A1) = 〈CTu〉⊥ = U. (25)

Using (23) we obtain

A1ẋ = A1(α̇ + q̇Bk)

= A1α̇ (26)

= A1f (0, 0) + x + O(2)

= A1f (0, 0) + α + qBk + O(2) (27)

and projecting (26) and (27) onto U = R(A1) along 〈Bk〉, we obtain A1α̇ = A1f0 + α + O(2),
whence

α̇ = f0 + A−1
0 α + O(2).

Using (24) we find

kTC1ẋ = kTC1(α̇ + q̇Bk)

= kTC1(f0 + A−1
0 α + O(2) + q̇Bk)

= kTC1f0 + kTC1A
−1
0 α + q̇ + O(2), (28)

kTC1ẋ = kT(C1f (0, 0) + y + O(2))

= kT(C1f0 + f1k + r + βk + O(2))

= kTC1f0 + f1 + β + O(2) (29)

and equating (28) and (29) we obtain kTC1A
−1
0 α + q̇ = f1 + β + O(2).

Summarizing the previous calculations, we have obtained a system of equations satisfied
by α and β:

α̇ = f0 + A−1
0 α + O(2),

kTC1A
−1
0 α + q̇ = f1 + β + O(2),

and there remains to obtain an expression for q̇, that is dX(α, β)/dt . Since β = kTy ∈ W 1,∞

holds by assumption, it follows that X(α, β) ∈ W 1,∞ and

q̇ = dαX(α, β)α̇ + dβX(α, β)β̇

= dαX(α, β)[f0 + A−1
0 α + O(2)] + dβX(α, β)β̇,

but since

dαX(0, 0) = 0 and d2
ppX(0, 0)[v, v] = − 1

ω
uTd2

xxg(0, 0)[v, v], ∀v ∈ U,
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we find

dαX(α, β)[f0 + A−1
0 α + O(2)] = dαX(0, 0)[f0 + A−1

0 α] + d2
ppX(0, 0)[α, f0 + A−1

0 α]

+d2
αβX(0, 0)[f0 + A−1

0 α, β] + O(2)

= d2
ppX(0, 0)[α, f0] + βd2

αβX(0, 0)[f0, 1] + O(2)

= −1

ω
(uTd2

xxg(0, 0)[α, f0] + βuTd2
xyg(0, 0)[f0, k]) + O(2).

If we now define s(α, β) := dβX(α, β), we obtain a system of differential equations satisfied
by α and β:

α̇ = f0 + A−1
0 α + O(2),

s(α, β)β̇ = f1 + cTα + γβ + O(2),

where

cTα ≡ −kTC1A
−1
0 α +

1

ω
uTd2

xxg(0, 0)[f0, α], ∀α ∈ U (30)

and

γ = 1 +
1

ω
uTd2

xyg(0, 0)[f0, k]. (31)

It follows from property (iv) earlier that s(0, 0) = 0 and sβ(0, 0) �= 0.
In order to prove the claim that χ(B ′ ∩ �) = S ∩ C ′ we differentiate the expression

g(χ(α, β)) ≡ 0, giving

dxg(α + X(α, β)Bk, Y (α, β) + βk)[dβX(α, β)Bk]

+dyg(α + X(α, β)Bk, Y (α, β) + βk)[k + dβY (α, β)] ≡ 0.

Using assumptions (A1) and (A2), this implies that

s(α, β) = 0 ⇐⇒ dyg(α + X(α, β)Bk, Y (α, β) + βk)[k + dβY (α, β)] = 0

⇐⇒ χ(α, β) ∈ S,

for (α, β) ∈ B ′, and the claim therefore follows.
Conversely, if a solution of (NF) is given with the regularity conditions in the statement

of the theorem, then it is clear that this is mapped to a solution of (1) and (2) by the
diffeomorphism χ . �
Definition 3. A pair (α, β) ∈ � is said to be a pseudo-equilibrium for (NF) if f1 + cTα + γβ +
G(α, β) = 0. Throughout, we shall denote the set of pseudo-equilibria of (NF) by P and a
pseudo-equilibrium is said to be proper if f0 + L0α + F(α, β) �= 0.

As a consequence, the zero element (0, 0) ∈ U × R is a (proper) pseudo-equilibrium
point for (NF) if and only if (0, 0) ∈ C is a (proper) pseudo-equilibrium point for (1) and (2).
Subsequently, we state all the remaining results in terms of (NF) rather than (1) and (2). Now
the set P may be empty if f1 �= 0, but if f1 = 0 then (A5) is satisfied and P is certainly
non-empty as it contains the zero element of U × R and the following lemma, which follows
from Rabier and Rheinboldt (1994, theorem 2.1), says that impasse points are the norm rather
than the exception for elements of �.

Lemma 2.2. Any element of �\P is an impasse point for (NF).

In the remainder we shall call the first equation in (NF) the ordinary part and the second
equation will be called the quasi-linear part. The set � defined in (17) will be described as the
singularity of (NF).
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Remark 1. If f1 (=(1/ω)uTCf (0, 0)) �= 0 in equation (18) of theorem 2.1, then (A5) is
violated and lemma 2.2 tells us that there is no Lipschitz (or smoother) solution of (NF)
satisfying the initial condition α(0) = 0, β(0) = 0. Note that if f0 = 0 and f1 = 0,
theorem 2.1 reduces to Beardmore and Laister (2002, theorem 2.2).

Clearly, if a solution of (NF) satisfies s(α(T ), β(T )) �= 0, then α and β are analytic in
some neighbourhood of T . On the other hand, if the solution encounters the singularity �,
this may cause a jump in the derivative of β and the fact that β ∈ W 1,∞ accounts for this.

Before proceeding, we must define some notation that is used in the remainder of the
paper. In the case that (x, y) = (0, 0) is a proper pseudo-equilibrium of (1) and (2), so that
(A5) applies and f0 �= 0, f1 = 0 as a result, we define the two-dimensional vector space
V ⊂ U × R by

V := 〈(f0, 0), (0, 1)〉 ⊂ 〈CTu〉⊥ × R (32)

and let �(α, β) denote the analytic mapping � : B ′ (⊂ U × R) → R
2

�(α, β) = (s(α, β), cTα + γβ + G(α, β)) (33)

such that �(0, 0) = (0, 0). Let us also form the decomposition

U = 〈f0〉⊥ ⊕ 〈f0〉, (34)

recalling the fact that f0 = PU [f (0, 0)] which coincides with f (0, 0) when f1 = 0, and also
let us record the fact that throughout the remainder of this paper we shall make use of the
orthogonal decomposition (34) and write

α = λf0 + a ∈ 〈f0〉 ⊕ 〈f0〉⊥ = U, (35)

where λ ∈ R and a ∈ U with aTf0 = 0.
We have the following lemma which gives a non-degeneracy condition to ensure that P

has a manifold structure.

Lemma 2.3. Suppose that (0, 0) is a proper pseudo-equilibrium for (NF) and

uTd2
xyg(0, 0)[f0, k](ω + uTd2

xyg(0, 0)[f0, k])

�= uTd2
yyg(0, 0)[k, k](−ωkTC1A

−1
0 f0 + uTd2

xxg(0, 0)[f0, f0]),

then P is a codimension-1, analytic submanifold of � which contains (α, β) = (0, 0).

Proof. Since (0, 0) is a pseudo-equilibrium for (NF), then f1 = 0 in (NF). Now the
mapping � defined in (33) satisfies �(0, 0) = (0, 0) and the derivative of � at (0, 0),
d�(0, 0) : U × R → R

2 is then given by

d�(0, 0) =
[
dαs(0, 0) dβs(0, 0)

cT γ

]

and using (30) and (31) this is the matrix

1

ω

[ −uTd2
xyg(0, 0)[·, k] −uTd2

yyg(0, 0)[k, k]

−ωkTC1A
−1
0 + uTd2

xxg(0, 0)[f0, ·] ω + uTd2
xyg(0, 0)[f0, k]

]
.

If we define the mapping �0(λ, β, a) = �(λf0 + a, β), where a ∈ 〈f0〉⊥ ⊂ U , then
�0(0, 0, 0) = 0 and dλ,β�0(0, 0, 0) = (1/ω)Q where Q is the 2 × 2 matrix

Q := ω

[
dαs(0, 0)[f0] dβs(0, 0)

cTf0 γ

]

=
[ −uTd2

xyg(0, 0)[f0, k] −uTd2
yyg(0, 0)[k, k]

−ωkTC1A
−1
0 f0 + uTd2

xxg(0, 0)[f0, f0] ω + uTd2
xyg(0, 0)[f0, k]

]
, (36)
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which has a non-zero determinant by assumption. The result now follows from the implicit
function theorem which allows us to represent P locally as a graph with λ = λ(a) and
β = β(a). �

The matrix Q in (36) is crucial for what is to follow, so let us record its eigenvalues which
we assume for now to be real and define ς ∈ R to be that number which satisfies

{ς, ω − ς} = σ(Q), (37)

noting that tr(Q) = ω. For brevity, we shall also write

Q =
[
Q11 Q12

Q21 Q22

]
(38)

throughout. Let us label the eigenvectors of Q as follows:

Qu = ςu, Qv = (ω − ς)v, (39)

for non-zero vectors u = (u1, u2), v = (v1, v2) ∈ R
2. Now define the matrix P = [u|v] so

that QP = PD, where D is the diagonal matrix of eigenvalues diag{ς, ω − ς}.
Lemma 2.4. Suppose that (0, 0) is a proper pseudo-equilibrium point for (NF), then u1v1 �= 0.

Proof. Suppose that (0, 1)T is an eigenvector of Q, it immediately follows from (36) that
uTd2

yyg(0, 0)[k, k] = 0 but this contradicts (A3). �

3. Desingularizing (NF)

The preparatory stages with regard to reducing (NF) to a local normal form are almost complete.
The goal in this section is to show that in a neighbourhood of the pseudo-equilibrium point
(α, β) = (0, 0) associated with (NF), the study of the local dynamics can be reduced to a
planar system of differential equations on the two-dimensional space V defined in (32), the
orbits of (NF) are then obtained from suitable images of this flow.

So, let the variable τ represent a new timescale defined by

dt

dτ
= s(α(t), β(t)), t (τ0) = t0. (40)

If we abuse notation and write α(τ) = α(t (τ )) and β(τ) = β(t (τ )), we then obtain the
following differential equation:

α′ = s(α, β)(f0 + L0α + F(α, β)), (41)

β ′ = cTα + γβ + G(α, β), (42)

where a prime (′) denotes d/dτ . Since f0 + L0α + F(α, β) �= 0 holds at a proper pseudo-
equilibrium point of (NF), proper pseudo-equilibria of (NF) are equilibria of (41) and (42)
which are not themselves equilibria of (NF).

The strategy used to locate solutions of (NF) through a pseudo-equilibrium will be to
obtain a one-dimensional invariant manifold of (41) and (42) which contains the corresponding
equilibrium point of this differential equation and which is transverse to the singularity. This
manifold will then be quasi-invariant for (NF) and the orientation of the flow of a solution of
(NF) will be different from that of (41) and (42) where s(α, β) < 0. While the arrival time of a
solution of (41) and (42) at this equilibrium along such a manifold will not be finite, the arrival
time for (NF) at the pseudo-equilibrium may well be. If so, one can then concatenate the two
resultant solutions of (NF) together to enlarge the interval of existence of either solution so as to
create an orbit of (NF) which passes through the singularity. Due to the infinite time of flight of
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solutions of (41) and (42) along an invariant manifold containing an equilibrium, we will need to
take τ0 = +∞ and τ0 = −∞ in (40), depending on the orientation of the flow of (41) and (42).

Further, the choice of timescale for (40) is only defined up to a constant. One could
use µs(α(t), β(t)) in (40) to desingularize (NF) where µ ∈ R is any non-zero constant, thus
multiplying both of equations (41) and (42) by a factor µ. However, the results in the remainder
of this paper do not depend upon the sign of µ as different signs just correspond to different
orientations of the orbits of (41) and (42).

3.1. Pseudo-nodes

The first theorem that we present regarding singular solutions of (NF), and therefore (1) and (2),
is the following which is shown pictorially in figure 2.

Theorem 3.1. Suppose (0, 0) is a proper pseudo-equilibrium point for (NF) and Q has real
and distinct eigenvalues ς and ω − ς such that sgn(ς) = sgn(ω − ς). If, in addition,

(R) ρ := max{ς/(ω − ς), (ω − ς)/ς} �∈ N,

then there are uncountably many solutions (α, β) of (NF) in Cρ�+1×Cρ� with initial condition
(α(0), β(0)) = (0, 0). There is also an analytic solution with the same initial datum.
Consequently, there are uncountably many Cρ�+1 × Cρ� solutions (x, y) of (1) and (2) and
an analytic solution, all with initial condition (x(0), y(0)) = (0, 0).

In addition, if

ωkTC1A
−1
0 f0 �= uTd2

xxg(0, 0)[f0, f0] (43)

then there is a second analytic solution of (NF) through (0, 0). Subsequently, there is a second
analytic solution (x, y) of (1) and (2) with initial condition (x(0), y(0)) = (0, 0).

Proof. First of all note that

s(α, β)(f0 + L0α + F(α, β)) = s(α, β)f0 + O(2)

= (dαs(0, 0)[α] + dβs(0, 0)[β])f0 + O(2)

= − 1

ω
f0(u

Td2
xyg(0, 0)[α, k] + βuTd2

yyg(0, 0)[k, k]) + O(2). (44)

Using the decomposition (35), let us write α = λf0 + a ∈ U with aTf0 = 0 and
uTCf0 = uTCa = 0. Using (41) and (42) and (44) we obtain

α′ = λ′f0 + a′

= s(λf0 + a, β)(f0 + L0[λf0 + a] + F(λf0 + a, β))

= − 1

ω
f0(u

Td2
xyg(0, 0)[λf0 + a, k] + βuTd2

yyg(0, 0)[k, k]) + O(2) (45)

Figure 2. The flow of a DAE near a pseudo-node. A two-dimensional invariant manifold (a subset
of which is indicated by the grey region) contains two analytic solutions and uncountably many
solutions of finite smoothness which pass through the singularity. Singular points not on P are
impasse points.
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and taking the inner product of this with f0 we find

λ′ = − 1

ω
(uTd2

xyg(0, 0)[λf0 + a, k] + βuTd2
yyg(0, 0)[k, k]) + O(2).

Moreover, from (45) we also have a′ = O(2), and from (42) there results β ′ = λcTf0 + cTa +
γβ + O(2). If we define ν = (λ, β) then[

ν ′

a′

]
= 1

ω

[
Q R
0 0

] [
ν

a

]
+ O(2), (46)

where the linear mapping R : 〈f0〉⊥ → R
2 is given by

R[a] = (−uTd2
xyg(0, 0)[a, k], −ωkTC1A

−1
0 a + uTd2

xxg(0, 0)[f0, a]). (47)

Finally, let us define

b := Qν + Ra, (48)

so that [
b′

a′

]
= 1

ω

[
Q 0
0 0

] [
b

a

]
+ O(2). (49)

Since sgn(ς) = sgn(ω − ς), if we assume for definiteness and without the loss of any
generality that ς < 0, reversing the direction of time if need be, we may assume without
loss of generality that Q is a stable matrix, with two negative eigenvalues. Therefore the
differential equation (49) has two invariant manifolds associated with its zero equilibrium, one
a two-dimensional analytic stable manifold, W s(0, 0), described by a graph of the form

a = h(b), with h(0) = 0, dh(0, 0) = 0 (50)

and a centre manifold W c(0, 0), also described by a graph.
Let us now consider the stable manifold W s(0, 0) of (49). We can easily describe the

invariant spaces of the linear differential equation

ωb′ = Qb,

recalling Qu = ςu, Qv = (ω − ς)v and P = [u|v]. On setting Pw = b with w = (ζ, η) and
b defined in (48) we obtain

ωw′ = Dw, (51)

which has invariant manifolds described by the equation

(ω − ς)
dζ

ζ
= ς

dη

η
.

Let us now assume for definiteness and by (R) that

ρ = ς

ω − ς
> 1,

so that there are even and odd invariant manifolds

ζ = p|η|ρ and ζ = pη|η|ρ−1, (52)

for some arbitrary constant p.
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Denote the one-parameter family of even, Cρ� manifolds arising in the (ζ, η) plane from
(52) by Mp, parameterized by p ∈ R. Notice that M0 = {(ζ, η) : ζ = 0} is analytic and
there is a further analytic invariant manifold for (51) given by the set {(ζ, η) : η = 0}, we shall
call this set M.

By the non-resonance assumption (R), there is an analytic linearizing diffeomorphism ϕ

which carries the flow of the linear differential equation (51) to that of the nonlinear differential
equation

ωb′ = Qb + H(b), (53)

where equation (53) denotes the restriction of (49) to the stable manifold W s(0, 0), thus defining
the mapping H . The existence of an analytic diffeomorphism ϕ can be found in the works of
Poincaré (1916–1954) and also in Sternberg (1957, theorem 5, p 818). Hence, ϕ is a solution
of the equation

Qϕ(w) + H(ϕ(w)) = dϕ(w)Dw, ϕ(0) = 0,

so that

Q dϕ(0) = dϕ(0)D (54)

follows from a single differentiation and the fact that H(0) = 0, dH(0) = 0. Using the
analyticity of ϕ, let us write

ϕ(w) = dϕ(0)w + O(2), (55)

where the O(2) term is a function of w. There are now three separate cases to consider regarding
the manifolds Mp, M0 and M.

1. (Mp): The manifold Mp has the parametric representation in the (ζ, η) plane

Mp = {(p|η|ρ, η): η ∈ R} = {η(0, 1) + (p|η|ρ, 0) : η ∈ R}
and making use of (55), we have

ϕ(Mp) = {η dϕ(0)[0, 1] + dϕ(0)[p|η|ρ, 0] + O(η2): η small},
recalling that ρ > 1 by assumption (R). Hence for (λ, β) ∈ ϕ(Mp) we have

λ = ηθ1 + o(η), β = ηθ2 + o(η), (56)

where dϕ(0)[0, 1] = (θ1, θ2) ∈ R
2 is a non-zero vector by the invertibility of dϕ(0). In (56),

o(η) represents terms that are of order O(ηmin{ρ,2}). Using (54), it follows that

Q dϕ(0)[0, 1] = dϕ(0)D[0, 1]

= dϕ(0)[0, ω − ς ] = (ω − ς) dϕ(0)[0, 1].

From this we infer that (θ1, θ2) ∈ 〈v〉\{0} so that θ1 �= 0 by lemma 2.4.
As a consequence, one can view (56) as defining a Cρ�-system of equations which one

may solve, using the implicit function theorem, for

β = ψp(λ), such that ψp(0) = 0, ψ ′
p(0) = θ2

θ1
= v2

v1
,

where ψp is Cρ�. Using the fact that b−Rh(b) = Qν = Q(λ, ψp(λ)) is satisfied on W s(0, 0)

where h is defined in (50), we can apply the implicit function theorem to write b = b(λ) and
therefore a = h(b(λ)) =: a(λ) on ϕ(Mp).

Now, we can restrict the quasi-linear differential equation (NF) to ϕ(Mp) in order to
obtain a differential equation as follows. From (NF) we have

α̇ = λ̇f0 + ȧ = f0 + L0(λf0 + a) + F(λf0 + a, β)
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and by taking the inner-product of this with f0 we obtain

λ̇‖f0‖2 = ‖f0‖2 + λf T
0 L0f0 + f T

0 F(λf0 + a(λ), ψp(λ)),

on ϕ(Mp), which we may write as

λ̇ = 1 +

(
f T

0 L0f0

‖f0‖2

)
λ + Fp(λ). (57)

It follows that for each p, there is a solution λp(·) of (57) such that λp(0) = 0 and λp ∈ Cρ�+1.
Since αp(t) = λp(t)f0 + a(λp(t)) and βp(t) = ψp(λ(t)) provides a solution of (NF) for each
p, the existence of uncountably many solutions of this quasi-linear problem follows, with α in
Cρ�+1 and β in Cρ�. Since (x, y) = χ(α, β) is a corresponding solution of (1) and (2) from
theorem 2.1, we immediately infer that x and y are Cρ�, but then (1) tells us that x actually
lies in Cρ�+1.

2. (M0): To cover the case where p = 0, reason in a fashion which is entirely analogous
to case 1 earlier, except noting that Cρ� can be replaced by Cω throughout.

3. (M): On ϕ(M) we have to invoke the final hypothesis in the statement of the theorem
in order to locate the final analytic solution, but the argument is similar to cases 1 and 2. If we
recall that M = {(ζ, η): η = 0}, the manifold ϕ(M) can be represented parametrically (and
analytically so) in the form

(λ, β) = ζ dϕ(0)[1, 0] + O(ζ 2).

Now,

Q dϕ(0)[1, 0] = dϕ(0)D[1, 0]

= dϕ(0)[ς, 0] = ς dϕ(0)[1, 0],

so that dϕ(0)[1, 0] = (�1, �2) ∈ 〈u〉\{0} and if we suppose, seeking a contradiction, that
dϕ(0)[1, 0] ∈ 〈(1, 0)〉 the definition of Q then yields u ∈ 〈(1, 0)〉. However, this in turn gives
Q(1, 0) = ς(1, 0) which contradicts assumption (43) in the statement of the theorem, so that
�2 �= 0. Therefore, u2 �= 0 also follows.

Therefore, ϕ(M) has the parametric representation

λ = ζ�1 + O(ζ 2), β = ζ�2 + O(ζ 2),

which provides the Cartesian, analytic representation of ϕ(M) as a graph

λ = ψ(β), such that ψ(0) = 0, ψ ′(0) = �1

�2
,

obtained using the analytic version of the implicit function theorem.
In order to obtain the restriction of (NF) to ϕ(M), as in case 1 earlier, note that

b − Rh(b) = Qν = Q(ψ(β), β) on ϕ(M), and this relationship can be solved near
(b, β) = (0, 0) for b = b(β) by the analytic implicit function theorem. In turn we define
a(β) := h(b(β)), using the definition of W s(0, 0) from (50).

By considering the behaviour of the quasi-linear part of (NF) on ϕ(M), we obtain the
analytic, quasi-linear differential equation

s(α(β), β)β̇ = ψ(β)cTf0 + γβ + cTa(β) + G(α(β), β), (58)

where α(β) is decomposed as ψ(β)f0 + a(β) according to (35). However, we define the
function

�(β) := ψ(β)cTf0 + γβ + cTa(β) + G(α(β), β

s(α(β), β)
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and use the fact that a′(0) = dh(0, 0) · b′(0) = 0 and α′(0) = ψ ′(0)f0, we can apply
L’Hôpital’s rule and obtain the well-defined, non-zero quantity

�(0) = ψ ′(0)cTf0 + γ

dβs(0, 0) + ψ ′(0)dαs(0, 0)[f0]
. (59)

To see that (59) is well-defined and non-zero we reason as follows. Since Q(�1, �2) =
ς(�1, �2), we see that

ψ ′(0)cTf0 + γ

dβs(0, 0) + ψ ′(0)dαs(0, 0)[f0]
= �1c

Tf0 + �2γ

�2dβs(0, 0) + �1dαs(0, 0)[f0]

= ς�2

ς�1
= �2

�1
= u2

u1
.

By lemma 2.4 this quantity is well-defined and the fact that u2 �= 0 was established earlier. It
follows that (58) represents an ordinary differential equation near β = 0, namely β̇ = �(β),
and the fact that �(0) �= 0 shows that an analytic solution of this differential equation exists
which satisfies β(0) = 0, β̇(0) �= 0. This concludes the proof. �

In case 1 from the proof of theorem 3.1 which describes the behaviour of (NF) along the
manifold denoted ϕ(Mp), it is important to note that the image of ϕ(Mp) in U × R, which
we denote by W , is transverse to �. To see this, use the fact from (56) that λ = ηθ1 + o(η)

and β = ηθ2 + o(η) on ϕ(Mp), so that W = {(α(η), β(η)) : η small}. Elements of this set
have the form const · η(v1f0, v2) + o(η) ∈ U × R and therefore the tangent space of W at zero
satisfies T0(W) = 〈(v1f0, v2)〉. Now the tangent space of � at zero, from (17) in theorem 2.1,
is T0(�) = {(α ·dβs(0, 0)[1], −dαs(0, 0)[α]) : α ∈ U}. However, if there is a (δ, µ) ∈ U ×R

such that

(δ · dβs(0, 0)[1], −dαs(0, 0)[δ]) + µ(v1f0, v2) = (0, 0),

it follows that (dβs(0, 0), −dαs(0, 0)[f0]) must be an eigenvector for Q. This immediately
implies (ω − ς)dβs(0, 0) = 0, which contradicts the hypotheses of theorem 3.1 and which
therefore ensures that dim T0(�)⊕T0(W) = dim(U ×R). Hence W intersects � transversally
at zero.

This transversality result is important for reasons which are depicted in figure 3. This
shows two invariant manifolds of (41) and (42) through the pseudo-equilibrium, A and B,
where A is transverse to � but B is not, and both are stable manifolds. The right-hand diagram
of figure 3 shows that due to the change of orientation of the phase-curves where s(α, β) < 0,
the manifold B cannot be used to form a solution of (NF) as one cannot arrive at, and then
leave the singularity along B.

In case the non-resonance condition (R) fails in theorem 3.1 we can still prove the following
theorem.

Σ

s>0

s<0

Figure 3. (Left) The flow of the desingularized vector field (41) and (42) along two invariant
manifolds (A and B) associated with a pseudo-equilibrium, with singularity � shown as a thick
black line. (Right) The orientation of (NF) along A and B.
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Theorem 3.2. Suppose that (0, 0) is a proper pseudo-equilibrium point for (NF), that Q has
real and distinct eigenvalues ς and ω − ς such that sgn(ς) = sgn(ω − ς) and

(R)′ ρ := max{ς/(ω − ς), (ω − ς)/ς} ∈ N\{0, 1},
then there are uncountably many solutions of (NF) (α, β) in C2 × C1, with initial condition
(α(0), β(0)) = (0, 0). Consequently, there are uncountably many C2 ×C1 solutions (x, y) of
(1) and (2) with initial condition (x(0), y(0)) = (0, 0).

Proof. This theorem follows from case 1 of the proof of theorem 3.1 almost verbatim. The
only change to note is that the linearizing diffeomorphism ϕ from that argument is now only
of class C1 (from Hartman (1960) and also see Chiccone and Swanson (2000) for a recent
discussion of the regularity of ϕ), consequently the order relation in (55) must be re-written in
the form ϕ(w) = dϕ(0)w + o(‖w‖), taking into account the differentiability of ϕ. �

There is no analogy of theorem 3.1 which covers the case ρ = 1, because in order to find
two linearly independent eigenvectors of Q corresponding to the eigenvalue ς we must have
Q = ςI , where I is the 2 × 2 identity. However, the latter contradicts the fact that Q12 �= 0
which itself follows from (A3). If Q has an algebraically double eigenvalue ς with geometric
multiplicity 1, then logarithmic terms ensure that the invariant manifolds of the linear problem
ωb′ = Qb from (49) are insufficiently smooth to allow one to find multiple solutions of (NF).

The following example shows that if Q has an eigenvalue of algebraic multiplicity 2 then
(NF) need not support more than one solution through the point (α, β) = (0, 0), and in this
example Q is the matrix(

a 1
0 a

)
.

Example 1. Consider the quasi-linear differential equation

ẋ = 1, (ax + y)ẏ = ay, (60)

where a ∈ R is non-zero and suppose that (60) has a solution (x(t), y(t)) on some interval
of t = 0 with initial condition (x(0), y(0)) = (0, 0). Clearly (x(t), y(t)) = (t, 0) is one
solution, and if y(t) �≡ 0 then we can integrate (60) to obtain the relationship

x(t) = t, y(t) = Ā exp

(
t

ay(t)

)
(Ā ∈ R).

As y(t) is a differentiable function then y(0) �= 0 follows, so no such solution exists.

3.2. Pseudo-saddles

We now present the second theorem regarding singular solutions of (1) and (2), a pictorial
representation of which is given in figure 4.

Theorem 3.3. Suppose that (0, 0) is a proper pseudo-equilibrium point for (NF), that Q has
real eigenvalues ς, ω − ς and

sgn(ς) �= sgn(ω − ς),

then there are exactly two analytic solutions (α, β) of (NF) with initial condition (α(0), β(0)) =
(0, 0). Consequently, there are exactly two analytic solutions (x, y) of (1) and (2) with initial
condition (x(0), y(0)) = (0, 0).

In addition, there are two piecewise analytic solutions of (NF), (α, β) ∈ C1(I )×W 1,∞(I ),
such that (α(0), β(0)) = (0, 0). Consequently, there are exactly two piecewise analytic
solutions of (1) and (2) such that (x, y) ∈ C1(I ) × C0(I ) and kTy ∈ W 1,∞(I ), with initial
condition (x(0), y(0)) = (0, 0).
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Figure 4. The flow of a DAE near a pseudo-saddle. There are two analytic and two solutions of
finite smoothness which pass through the singularity. Singular points not on P are impasse points.

Proof. The proof follows that of theorem 3.1 verbatim up to equation (49), so let us take the
notation as used in that proof and now proceed in the following manner.

By assumption, Q has a positive and a negative eigenvalue, so that the differential equation[
b′

a′

]
= 1

ω

[
Q 0
0 0

] [
b

a

]
+ O(2) (61)

has stable, unstable and centre manifolds associated with its zero equilibrium; let us consider
the stable (W s) and unstable (W u) manifolds, both of which are analytic.

As in theorem 3.1, again define the matrix P = [u|v] so that QP = PD, where D is the
diagonal matrix of eigenvalues diag{ς, ω − ς}. On setting Pw = b with w = (ζ, η) we obtain

ωw′ = Dw, ωa′ = H(a, w), (62)

where H(0, 0) = 0 and dH(0, 0) = 0 and H represents the O(2) terms in (61).
Now, assuming without the loss of any generality (reversing time if need be) that

ς > 0, ω − ς < 0, we can describe W s and W u in terms of the coordinates given in (62). We
therefore obtain a description of

W s as ζ = ζS(η), a = aS(η), (63)

such that ζS(0) = 0, dζS(0) = 0, aS(0) = 0, daS(0) = 0; and

W u as η = ηU(ζ ), a = aU(ζ ), (64)

such that ηU(0) = 0, dηU(0) = 0, aU (0) = 0 and daU(0) = 0.
Let us recall that

b = Qν + Ra,

where ν = (λ, β), λ is defined in (35) and R in (47). Consequently, on W s we have

P
(

ζS(η)

η

)
= Q

(
λ

β

)
+ RaS(η),

which we may write as

ηP
(

0
1

)
= Q

(
λ

β

)
+ O(η2). (65)

However, by definition P(0, 1) = v = (v1, v2), so that from (65) and the fact that
Q−1v = (ω − ς)−1v, we obtain

(λ, β) = η(ω − ς)−1(v1, v2) + O(η2), (66)

as a parametric description of W s in the (λ, β) plane. Similarly, on W u we have

P
(

ζ

ηU(ζ )

)
= Q

(
λ

β

)
+ RaU(ζ ),
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which we may write as

ζP
(

1
0

)
= Q

(
λ

β

)
+ O(ζ 2).

Since P(1, 0) = u = (u1, u2), we obtain

(λ, β) = ζς−1(u1, u2) + O(ζ 2), (67)

as a parametric description of W u in the (λ, β) plane.
Recall that v1 · u1 �= 0 from lemma 2.4, this will be used below. One can represent W s

as a graph by viewing (66) as an equation which first allows one to solve the relationship
λ = η(ω − ς)−1v1 + O(η2) near (λ, η) = (0, 0) using the implicit function theorem as

η = (ω − ς)v−1
1 λ + O(λ2) =: ηS(λ)

and then

β = v2v
−1
1 λ + O(λ2) on W s (68)

follows from (66).
One may similarly represent W u as a graph by viewing (67) as an equation whereby one

solves the relationship λ = ζς−1u1 + O(ζ 2) near (λ, ζ ) = (0, 0) as

ζ = ςu−1
1 λ + O(λ2) =: ζU (λ)

using the implicit function theorem, giving

β = u2u
−1
1 λ + O(λ2) on W u. (69)

Now we consider (NF) restricted to the graphs given in (68) and (69). Since α = λf0 + a

with aTf0 = 0, let us project the ordinary part of (NF) orthogonally onto f0 to provide the
differential equation

λ̇ = 1 +

(
f T

0 L0f0

‖f0‖2

)
λ +

f T
0 L0a

‖f0‖2
+ f T

0 F(λf0 + a, β). (70)

On W s, a is given by the expression aS(η) = aS((ω − ς)v−1
1 λ + O(λ2)) = O(λ2) (where

the second-order property here follows from (63) and the vanishing of aS and its derivative at
the origin) and β is given by v2v

−1
1 λ + O(λ2), thus (70) can be written

λ̇ = 1 +

(
f T

0 L0f0

‖f0‖2

)
λ + O(λ2). (71)

This is an analytic differential equation which has exactly one solution which satisfies λ(0) = 0,
thus providing one of the analytic solutions in the statement of the theorem.

On W u, using (64), a is given by the expression aU(ζ ) = aU(ςu−1
1 λ + O(λ2)) = O(λ2)

and β is given by u2u
−1
1 λ + O(λ2), and the same reasoning as that used to derive equation (71)

shows that a second analytic solution can be found.
This concludes the proof of the existence of two analytic solutions which we shall label as

(λs, βs) and (λu, βu), both of which satisfy (λ(0), β(0)) = (0, 0). Note that λ̇s(0) = λ̇u(0) = 1
whereas β̇s(0) = v2/v1 and β̇u(0) = u2/u1, moreover the fact that u and v are linearly
independent ensures that β̇s(0) �= β̇u(0).

In order to construct the two solutions of reduced regularity given in the statement of the
theorem, we proceed by concatenating the two analytic solutions in the following manner. Let
(−T , T ) be a common interval of existence of (λs, βs) and (λu, βu) and define the functions

Lu(t) :=
{
λu(t): t ∈ (−T , 0),

λs(t): t ∈ [0, T ),
Bu(t) :=

{
βu(t): t ∈ (−T , 0),

βs(t): t ∈ [0, T )
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and

Ls(t) :=
{
λs(t): t ∈ (−T , 0),

λu(t): t ∈ [0, T ),
Bs(t) :=

{
βs(t): t ∈ (−T , 0),

βu(t): t ∈ [0, T ).

Hence L̇u(0) = 1 and L̇s(0) = 1, so that Lu and Ls are both in C1(−T , T ) as they are both
analytic on (−T , T )\{0}. We also define the functions

As(t) :=
{
aS(ηS(λ

s(t))): t ∈ (−T , 0),

aU (ζU (λu(t))): t ∈ [0, T )

and

Au(t) :=
{
aU(ζU (λu(t))): t ∈ (−T , 0),

aS(ηS(λ
s(t))): t ∈ [0, T )

and check that

(αu(t), βu(t)) := (Lu(t)f0 + Au(t), Bu(t))

and

(αs(t), βs(t)) := (Ls(t)f0 + As(t), Bs(t))

form solutions of (NF) on (−T , T ). Let us now do this. The given pair (αu, βu) is a solution
of (NF) on (−T , 0) and (0, T ) separately, and

αu(0) = 0, α̇u(0) = f0, αu ∈ C1(−T , T )

and

βu(0) = 0, βu ∈ W 1,∞(−T , T )

are all true by construction. Since s(αu(0), βu(0)) = s(0, 0) = 0, it follows that we can assume
(by a suitable modification on a set of measure zero) that the function s(αu, βu)β̇u, which is
an element of L∞(−T , T ), is actually in C0(−T , T ). It is now immediate that (αu, βu) is a
solution of (NF), and the same reasoning applies to (αs, βs). �

3.3. Pseudo-centres

This is the final case that we consider, whereby det(Q) = 0 so that lemma 2.3 is not applicable
and the set of pseudo-equilibria of (NF), P , does not necessarily form a manifold.

Theorem 3.4. Suppose that (0, 0) is a proper pseudo-equilibrium point for (NF) and Q has
real and distinct eigenvalues 0, ω (and ω �= 0 by (A2)). Then there is an analytic solution
(α, β) of (NF) with initial condition (α(0), β(0)) = (0, 0) and consequently there is an analytic
solution (x, y) of (1) and (2) with initial condition (x(0), y(0)) = (0, 0).

Moreover, for each integer r � 1 there is a codimension-1, quasi-invariant, Cr manifold,
WR ⊂ U × R, of (NF). So, for each (α0, β0) ∈ WR there is a solution of (NF) in
WR with (α, β) ∈ Cr+1(I ) × Cr(I ), for some interval I containing 0, and such that
(a(0), β(0)) = (α0, β0). This yields a solution (x, y) of (1) and (2) with initial condition
in χ(WR), where χ is defined in theorem 2.1, such that (x, y) ∈ Cr+1(I ) × Cr(I ). Finally,
P̂ := WR ∩� is a set of proper pseudo-equilibria of (NF) containing the point (α, β) = (0, 0).

Proof. The proof follows that of theorem 3.1 verbatim up to equation (47), but now det(Q) = 0.
Let us therefore assume that

Qu = 0 and Qv = ωv,
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so that ς = 0, and since ω �= 0 it follows that u and v are linearly independent. Recalling the
definition of the matrix P = [u|v], set Pw = b with w = (ζ, η), so that ζu + ηv = w and (46)
can be written

ζ ′ = ω−1Pu[Ra] + O(2), (72)

η′ = η + ω−1Pv[Ra] + O(2), (73)

a′ = O(2), (74)

where the projection mappings Pu and Pv project 〈u, v〉 onto its subspaces 〈u〉 and 〈v〉,
respectively. If we now define η̄ = η + (1/ω)Pu[Ra] then η̄′ = η̄ + O(2), and (72)–(74)
can be written 

η̄′

ζ ′

a′


 =


1 0 0

0 0 ω−1Pv[R]
0 0 0





η̄

ζ

a


 + O(2). (75)

Let r � 1 be given. Now, (75) has a one-dimensional unstable manifold (W u)
and a Cr, (n − 1)-dimensional centre manifold (W c) associated with the equilibrium point
(η̄, ζ, a) = (0, 0, 0) ∈ R × R × 〈f0〉⊥ (where 〈f0〉⊥ is a codimension-1 subset of U , which
itself has dimension n − 1), both of which are given by graphs such that

on W u: ζ = ζU (η̄), a = aU(η̄)

and

on W c: η̄ = η̄C(a, ζ ).

Let us also record the following properties: ζU (0) = 0, aU (0) = 0, dζU (0) = 0, daU(0) = 0
and both ζU and aU are analytic; η̄C(0, 0) = 0, dη̄C(0, 0) = 0 and for any given r ∈ N, η̄C is a
Cr function on some neighbourhood Bδ(0, 0) of (0, 0) in 〈f0〉⊥ ×R, where this neighbourhood
may depend on r .

Consider the behaviour of (NF) restricted to W u. The relation η = η̄ − ω−1Pu[RaU(η̄)]
inverts near zero to give η̄ = η + O(η2), so that

(λ, β) = ηu + ζU (η + O(η2))v

is a parametric representation of W u in the (λ, β)-plane. Since u = (u1, u2) with
u1 �= 0, we can eliminate η from this representation to give the Cartesian representation
β = λu2/u1 + O(λ2) locally to zero. Having expressed the manifold W u locally as a graph
over the variable λ, we may project the ordinary part of (NF) orthogonally onto the span of
f0 and restrict (NF) to W u. This provides an analytic differential equation on W u of the form
λ̇ = 1 + O(λ), thus providing an analytic solution of (NF) through the point (α, β) = (0, 0).

On W c we have η = η̄C(a, ζ ) − ω−1Pu[Ra] =: η(a, ζ ), and it follows that(
λ

β

)
= η(a, ζ )u + ζv. (76)

However, relationship (76) can be locally solved using the implicit function theorem to give
η = ηC(a, λ) and β = βC(a, λ). Using the fact that α = λf0 + a we simply write β = βC(a)

for this representation and from the ordinary part of (NF) we immediately obtain a differential
equation on W c, namely

α̇ = f0 + L0α + F(α, βC(α)).

(Since (NF) thus induces a local flow on W c, we re-write WR as W c: a superscript c would be
inappropriate and we use a superscript R to remind us of the regular character of solutions of
(NF) on W c.)
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Now consider the non-empty set

P̂ := {(α, β) ∈ B ′′ : s(α, β) = 0, β = βC(α), α = λf0 + a} ⊂ � ∩ WR,

where B ′′ ⊂ B ′ is some open neighbourhood of zero and B ′ is defined in theorem 2.1. We
now show that B ′′ can be chosen so that P̂ is a set of pseudo-equilibria for (NF) according to
definition 1, recalling that f1 = 0 by (A5). So let (α0, β0) ∈ P̂ and let (α, β) be a solution
of (41) and (42) with (α0, β0) as initial condition such that (α(τ), β(τ )) ∈ WR for all τ

sufficiently small, then β(τ) ≡ βC(α(τ)), where the mapping βC is defined above. For all
such τ there results

cTα + γβ + G(α, β) = β ′

= d

dτ
βC(α(τ))

= dβC(α)α′(τ )

= dβC(α)s(α, β)(f0 + L0α + F(α, βC(α)),

setting τ = 0 yields cTα0 + γβ0 + G(α0, β0) = 0. Now f0 �= 0 as f (0, 0) = f0 + f1Bk and
both f1 = 0 and (A5) are satisfied, so we choose B ′′ so that f0 + L0α + F(α, βC(α)) �= 0
for all (α, β) ∈ B ′′. From this it follows that P̂ forms a set of proper pseudo-equilibria as
claimed. �

Theorem 3.4 provides another case, distinct from the singular equilibrium problem
described in theorem 2.5 of Beardmore and Laister (2002), where (NF) has a manifold of
smooth solutions which has non-empty intersection with the singularity, and therefore a local
flow is induced on that manifold by (NF). Figure 5 shows the structure of the invariant manifolds
near such a proper pseudo-centre.

We conclude this paper with an extended example to illustrate the role played by the matrix
Q in the preceding theorem.

Example 2. Consider the following equation
1
2 (θ̇)2 + (1 − e−t )F (θ) + e−t θ2 = λ, (77)

where λ is a given parameter and F(θ) is an analytic function. We seek solutions of (77) which
satisfy the initial conditions θ(0) = 0, θ̇ (0) = 0. Now (77) can be written as a DAE by setting
� = θ̇ . This gives a system of the form

θ̇ = �,

ṡ = 1 − s,

0 = 1
2�2 + (1 − s)F (θ) + sθ2,

WR

Figure 5. The structure of invariant manifolds near a pseudo-centre. A dynamical system is
induced by the DAE on WR, WR ∩ P are also pseudo-equilibria and singular points not on P are
impasse points. There is also an analytic solution through the pseudo-centre which does not lie
within WR.
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which we write as
ṡ

θ̇

0


 =


1

0
0


 +


−1 0 0

0 0 1
−λ ϑ 0





 s

θ

�


 +


 0

0
O(2)


 , (78)

in the vicinity of the point (s, θ; �) = (0, 0; 0), where ϑ = F ′(0) and λ = F(0). In
terms of the notation used thus far in this paper, we have x = (s, θ), y = �, and
f (x, y) = f (s, θ; �) = (1 − s, �), g(x, y) = g(s, θ; �) = −λ + 1

2�2 + (1 − s)F (θ) + sθ2.
It follows thatg(0, 0; 0) = 0 andf (0, 0; 0) = (1, 0) �= (0, 0), so that (s, θ; �) = (0, 0; 0)

is a candidate proper pseudo-equilibrium point, as dyg(0, 0)[k] from (A1) corresponds to
d�g(0, 0; 0) = 0, with u = k = 1. Condition (A1) of definition 2 is therefore seen to be
satisfied. Now, dxg(0, 0) corresponds to the vector

d(s,θ)g(0, 0; 0) = (dsg(0, 0; 0), dθg(0, 0; 0)) = (−λ, ϑ),

and dyf (0, 0) corresponds to d�f (0, 0; 0) = (0, 1). Consequently, uTdxg(0, 0)dyf (0, 0)k =
(−λ, ϑ) · (0, 1) = ϑ where a dot (·) is the usual inner product on R

2. In order to satisfy
condition (A2) of definition 2 we need F ′(0) �= 0 to hold. Condition (A3) of definition 2 is
clearly satisfied since d2

yyg(0, 0)[k, k] corresponds to the expression d2
��g(0, 0; 0) = 1 �= 0.

The mapping d(f × g) in condition (A4) is given by the matrix in (78):

L :=

−1 0 0

0 0 1
−λ ϑ 0




and this is invertible by the fact that ϑ �= 0.
Consequently, (s, θ; �) = (0, 0; 0) is a folded-singular point when λ = 0 and if is

not to be an impasse point for (77), then we must also ensure that (A5) holds. For this to
be the case, we need the expression corresponding to dxg(0, 0)f (0, 0) from (A5), namely
(−λ, F ′(0)) · f (0, 0; 0) = (−λ, ϑ) · (1, 0) = −λ, to be zero. Thus we must also assume that
F(0) = 0 to ensure that the given singular point is also a proper pseudo-equilibrium point.

Let us now determine the matrix Q in order to determine the type of pseudo-equilibrium
point. The vectors denoted Bk and CTu in lemma 2.1 are

Bk = (0, 1)T and CTu = (0, ϑ),

this can be read from the definition of the matrix L above which is partitioned according
to (9). Hence ω = uTCBk = ϑ , and the space U = 〈CTu〉⊥(⊂ R

2) is given by
U = 〈(0, ϑ)〉⊥ = 〈(1, 0)〉. We may assume without the loss of any generality (by rescaling
time if necessary) that

ϑ = 1 (79)

and consequently the space U ⊕ 〈Bk〉 from (13), with associated complementary projections
PU and PB , has orthonormal basis {(0, 1), (1, 0)}.

Now, the vector f0 from theorem 2.1 is given by

f0 = PUf (0, 0) = PU(1, 0) = (1, 0),

and f1 = PBf (0, 0) from the same theorem is f1 = (1, 0) · (0, 1) = 0. (The latter is simply a
repetition of the fact that we have a pseudo-equilibrium point at (s, θ; �) = (0, 0; 0).)

Now d2
xyg(0, 0) is the mapping

d2
(s,θ)�g(0, 0; 0) = (d2

s�g(0, 0; 0), d2
θ�g(0, 0; 0)) = (0, 0)
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and d2
yyg(0, 0) is d2

��g(0, 0; 0) = 1. Also, d2
xxg(0, 0) corresponds to(

d2
ssg(0, 0; 0) d2

θsg(0, 0; 0)

d2
sθg(0, 0; 0) d2

θθg(0, 0; 0)

)
=

(
0 −1

−1 F ′′(0)

)
.

Now we are in a position to write down the matrix Q:

Q11 = − uTd2
xyg(0, 0)[f0, k] = (0, 0) · (1, 0) = 0,

Q12 = − uTd2
yyg(0, 0)[k, k] = −1,

Q22 = ω + uTd2
xyg(0, 0)[f0, k] = ω = ϑ = 1.

In order to find Q21 = −ωkTC1A
−1
0 f0 + uTd2

xxg(0, 0)[f0, f0], let us note that the expression
uTd2

xxg(0, 0)[f0, f0] corresponds to

f0 ·
(

0 −1
−1 F ′′(0)

)
(1, 0)T = (1, 0) · (0, −1) = 0,

so that Q21 = −ωkTC1A
−1
0 f0, where C1 is defined in (10) and A0 is defined in (25) and

A−1
0 = L0 in terms of theorem 2.1.

In order to determine these final elements of Q21, note that

L−1 :=

−1 0 0

0 0 1
0 1 0


 = L,

since λ = 0 and ϑ = 1. It follows that C1 = (0, 1) and A0 is the mapping A1 restricted to
the invariant subspace 〈(1, 0)〉, so A0(µ, 0) = (−µ, 0) for all µ ∈ R. Hence A−1

0 (µ, 0) =
(−µ, 0) for all µ ∈ R too and therefore Q21 = −(0, 1)A−1

0 (1, 0) = −(0, 1) · (−1, 0) = 0.
Finally

Q =
(

0 −1
0 1

)

and the pseudo-equilibrium point of (77) is a pseudo-centre since σ(Q) = {0, 1}. Theorem 3.4
now applies and the existence of two solutions through the pseudo-equilibrium point follows.

In order to see a little more directly how the matrix Q arises in this simple case, note that
the constraint (78) can be solved near to the point (s, θ; �) = (0, 0; 0) for

θ = − 1
2�2 + p(s, �2),

by the implicit function theorem because F ′(0) = 1 was assumed in (79), where p represents
terms of order three and higher. Differentiating (78) we obtain

��̇ + F ′(θ)θ̇(1 − s) − ṡF (θ) + ṡθ2 + 2sθ θ̇ = 0,

from where

��̇ + F ′(θ)�(1 − s) − (1 − s)F (θ) + (1 − s)θ2 + sθ� = 0.

However, F(θ) = θ + O(θ2) which is O(2) as a function of (�, s), and we subsequently obtain
a relationship of the form

ṡ = 1 − s, ��̇ + � = O(2), (80)

which is satisfied by sufficiently smooth solutions of (77); recall that θ is a function of s and
�2. Here O(2) denotes a function of � and s of order 2.

Rescaling time in (80) we obtain a differential equation whose orbits coincide with those
of (80) away from the singular manifold {(s, �) : � = 0}. One choice for this rescaling yields

s ′ = −� + s�, �′ = � + O(2), (81)
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the linearization of which about the point (s, �) = (0, 0) is the matrix Q. The invariant
manifolds of (81) can now be obtained; there is a centre manifold and an unstable manifold
and the corresponding graphs can now be used in (80) to show that this quasi-linear problem
has smooth solutions as described in theorem 3.4.

3.4. Complex eigenvalues

One situation not covered previously is when the matrix Q has complex eigenvalues, in this
case we have the following.

Theorem 3.5. Suppose that σ(Q) = {u + iv, u − iv} where u, v ∈ R and u, v �= 0, then there
is no solution of (NF) with initial condition (α, β) = (0, 0).

This theorem is a direct consequence of the fact that the focus studied in the planar singular
systems of Llibre et al (2002) (this reference is to be found in Galves et al (2002)) can support
no smooth solution. This follows from the geometric fact that any orbit emanating from
such a focus must intersect the codimension-1 singularity � infinitely many times. When such
intersection points are impasse points, as happens in the case of (NF) by the fact that points on
�\P are impasse points, we then infer that any interval of existence of a solution through such
a focus must contain infinitely many points where the corresponding orbit encounters impasse
points. This can only lead to the conclusion that the interval of existence is a singleton set, so
no such solution exists.

It is easy to see directly that a two-dimensional quasi-linear problem like (NF) for which
the matrix Q has complex eigenvalues exhibits no solutions in the following way. If there is a
differentiable solution of

ẋ = 1 + O(2), (āx + b̄y + O(2))ẏ = c̄x + d̄y + O(2)

subject to the initial condition (x(0), y(0)) = (0, 0), then

(ā + b̄ẏ(0))ẏ(0) = c̄ + d̄ẏ(0). (82)

The fact that

Q =
[
ā b̄

c̄ d̄

]

then ensures that the quadratic equation in ẏ(0) given by (82) has no real solution.
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