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A b s t r a c t - - W e  consider a class of degenerate diffusion equations where the nonlinearity is assumed 
to be singular (non-Lipschitz) at zero. It is shown that  solutions with compactly supported initial data 
become identically zero in finite time. Such extinction follows by comparison with newly constructed 
finite travelling waves connecting two stable equilibria. (~) 2004 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

This paper is concerned with the quasilinear parabolic equation 

_ m +l  u, - d (u ) ~  + f (u ) ,  (x, t) ~ Q := ]~ × (0, ~ ) ,  

u(x, O) = Uo(Z), x ~ R, 0 <_ uo <_ 1, 

(1) 
(2) 

where m > 0, d = 1 / (m + 1), u0 E C(R), and f satisfies the following. 

(A1) f e C[0, 1] N CI(0, 1], f (0)  = f (1)  = 0, and i f ( l )  < 0. Moreover, 3 a  e (0, 1) such that  
f < O o n ( O , a )  a n d f > O o n ( a ,  1). 

(A2) 3p  E (0, 1) and/3 > 0 such that  N := m + p  > 1 and u -P f (u )  --~ - /3 as u ~ 0 +. 
(A3) f :  vmf (v )  dv < O. 
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Assumptions (A1)-(A3) will collectively be referred to as (A). Such diffusion equations arise 
in many applications, including population genetics, signal propagation in nerve axons, and 
combustion theory [1-4]. 

In this paper, we establish the existence of a unique (modulo translation) finite travelling 
wave (FTW) v~(z) of (1) satisfying v~(-oo)  = 1 and v~(z) = 0 for all z > ~, for any ~ e R 
(see Section 3). In particular, v~ has negative velocity. By an FTW, we mean any travelling 
wave (TW) solution u(x  - ct) of (1) satisfying u(z) -- 0 for all z > w (or z < w) for some w e ~. 
Utilising v~ and its reflection as upper solutions, we then deduce the finite time extinction of 
compactly supported solutions of (1),(2). This follows from an existence-uniqueness-comparison 
result in Section 2. Finally, we apply our results to a singular bistable nonlinearity and present 
some numerical simulations. 

In the case of a smooth bistable nonlinearity f E C 2[0, oo), Hosono [5] proved the existence 
and stability of a unique FTW with nonnegative velocity satisfying u ( -oo)  = 1 and u(z) = 0 for 
all z >_ 0, provided f~  u '~ f (u)  du > O. However, when the reverse integral inequality holds in [5] 
there are no FTW solutions connecting the equilibria. It  is precisely the regularity of f at the 
degenerate point u = 0 which excludes the existence of such waves in the nonsingular case. 

We remark that  while finite time extinction phenomena are known to exist in absorptive heat 
equations of the form 

u s = d  u( ,~+l~,x~_Cu p , 0 < p < l  (3) 

(see [6] and the references therein), we are unaware of any results in this direction for sign- 
changing nonlinearities. In particular, for initial data satisfying f (uo(x ) )  > 0 for some x, one 
cannot deduce the finite time extinction property in the general case via comparison with solutions 
of (3). 

2. P R E L I M I N A R I E S  

Before proceeding to the study of TW solutions, we first settle the question of existence, 
uniqueness, and comparison of solutions for the Cauchy problem (1),(2). Here and throughout, 

@T := R × (0, T). 

DEFINITION 2.1. A nonnegative function u is said to be a weak solution of  (1),(2) i f  and only if  

for everyr ,  T > O, u E C(QT)  QL°°(QT)  and 

m+l uCt + du ¢xx + f (u )¢  dx dt = u(x,  T)¢(x, T)  - uo(x)¢(x ,  O) dx 

// + d u m+l (r, t)¢~ (r, t) - u m+l ( - r ,  t )¢~( - r ,  t) dr, 

for all ¢ E C 2 ' I ( 0 T )  such that  ¢ ~_ 0 and ¢(=t=r,t) = 0 for all t E [0, T]. 

LEMMA 2.1. I f  (A1),(A2) hold then there exists a unique weak solution u of (1),(2). Moreover, 
i f  u and v denote the solutions of (1), (2) with initial data satisfying 0 <_ Uo <_ vo ~ 1 in R, then 
O < u < v < l i n Q .  

PROOF. The proof is identical to [7, Theorems 2.5 and 2.10] except for a minor modification to 
allow for the sign-changing nonlinearity f considered here. The vital ingredient which allows us 
to generalise the result in [7] is the upper Lipschitz condition 

3 K  > 0 such that f ( v )  - f (u )  <_ K ( v -  u), for all 0 < u < v < 1, (4) 

which holds due to (A1),(A2). Below, we outline the modification required. 
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Existence follows via the following well-known construction. For k C N denote by (Pk) the 
problem 

ut = d (u '~+l )~  + f (u )  - f (ek) ,  (x, t) E Qk,T := ( - k ,  k) x (0, T), 

~ ( + k , t )  = M :=  sup  ~ o ( ~ ) ,  t e [0 ,T] ,  
~E(-c~,oo) 

u(x, 0) = ~O,k (x), x e [ -k ,  k]. 

Here, ek ~ 0 as k ~ oe and ~0,k is a monotone decreasing sequence converging to u0 (see 
[7, Section 4.A]). By classical results for uniformly parabolic equations, the solution sequence Uk 
is monotone decreasing and bounded below by ek > 0. The pointwise limit function u E L ~ ( Q T )  
then satisfies the integral identity in Definition 2.1. 

To obtain uniqueness, suppose tha t  ~ is any other solution of (1),(2). By comparison for (Pk), 
<_ Uk for all k so tha t  ~ _< u. Hence, it is sufficient to prove tha t  for any fixed t C (0, T], 

X C C ~ ( R ) ,  0 <_< X < 1 and ¢ > 0, there exists an r > 0 such tha t  

f )  (~(~, t) - ~(x, t))x(~:) d~ < 
7, 

(see [7, equation (4.3)]). We define ak as in [7, Section 3.B] by 

d ( ~ m + l  o m+l"~ 
- % ) uk ¢ ~, 

ak (~, t) = (~  - ~k)  ' 

~2 "~, uk = 

and note tha t  since uk > ek, the bound ak > C(k)  := e~ holds as in [7, equation (3.10)]. The 
only modification we need to make is in the choice of bk in [7, Section 4.B]. Due to the lack of 
monotonici ty of f in our case, we take 

(f(uk)-f(~)) +K, 
bk(x,t)= (g-uk) 

K-f'(~),  

uk ¢~ ,  

it k -=--~. 

By (4), it follows tha t  0 < bk <_ Ca(k) as in [7, equation (4.5)]. The integral identity [7, equa- 
tion (4.6)] then has the extra  term f f  K ( u k  -- 5)¢k,,~ on the r ight-hand side. Lett ing n --* 0% 
then k ~ oo and noting tha t  Ck,~ -< 1, one then has the inequality 

j0tf f ( ~ ( x , t )  - a ( ~ , t ) ) x ( x )  & < ~ + a "  (~(x,  s) - ~;(x, s))  & &  
r r 

for r sufficiently large. Hence, by Gronwall 's l emma 

- _ ( ~ ( x ,  t )  - ~ , ( ~ ,  t ) ) x ( x )  a x  < ~e ~ t  
r 

Since t is fixed and e is arbitrary, this gives the required result. 
Comparison and continuity of u follow from [7, Theorems 2.10 and 2.5]. 

3.  F I N I T E  T R A V E L L I N G  W A V E S  A N D  E X T I N C T I O N  

Let us write (1) in the divergence form 

ut = (umux)x + f (u ) ,  (x, t) e Q. 
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Setting z = x - ct, u is (formally) a TW solution of (1), with velocity c, if and only if u satisfies 
the quasilinear ordinary differential equation (ODE) 

- e u '  = (umu') '  + f (u ) ,  z e ]~, (5) 

where t = d .  Following [8,9], if we rescale the 'time' variable z according to 

ds 1 
dz (6) 

and set U(s) =- u(z), then u(z) is a (weak) TW solution of (1) if and only if U(s) is a (classical) 
TW solution of 

Ut = U ~  + U m f ( U ) ,  (x, t) C Q, (7) 

or equivalently, 
- c ( ]  -- U + U '~ f (V ) ,  s e ~, (8) 

where '=  d .  We call (8) the desingularised ODE since by (A1),(A2), U m f ( u )  e C1[0, 1]. 
Initially, we seek TW solutions of (7) for c > 0 connecting the equilibria U = 0 and U = 1. 

The following result can be found in [2, Theorem 2.4(b) and equation (2.7)]. 

LEMMA 3.1. If  (A) holds, then there exists a unique wave speed c* > 0 such that (8) has a 
positive solution U*(s) satisfying U*(-oo)  = 0 and U*(oo) = 1. Moreover, U* is monotone in s. 

Now let c > 0 and write (8) as the first-order system 

= V, (9) 

~" = - c V  - U'~f (U) .  (10) 

System (9),(10) possesses equilibria at (0, 0) and (1,0). Linearisation about these points then 
yields the local flow. (Of course, technically one would need to extend the functions U m and f (U)  
smoothly to include U < 0 in order to define a smooth vector field in an open neighbourhood of 
the origin, but the flow in the right-half plane would remain unaltered.) The equilibrium (1, 0) 
is a hyperbolic saddle point. The topological type of (0, 0) depends on the value of N as follows. 

If N > 1, the origin is nonhyperbolic and has a one-dimensional stable manifold WS(0,0) 
tangent to the eigenvector (1, - c )  T with corresponding eigenvalue )~ = -c ,  and a one-dimensional 
centre manifold W~(0, 0) tangent to the eigenvector (1, 0) T with corresponding eigenvalue ), = 0. 
(Note that the superscript in W~(0, 0) signifies the centre manifold and not its dependence on 
the wave speed c.) A straightforward centre manifold reduction [10, Theorem 3, p. 25] gives the 
local representation of W~(0, 0), restricted to U > 0, as a graph over U given by 

v = -ZuN + o (uN) ,  as 0+. (11) 
C 

Consequently, the local flow of (9),(10) restricted to We(0,0) for U >_ 0, is unstable. 
If N = 1, the origin is a hyperbolic saddle with corresponding eigenvalues 

A (c) := (12) 

and stable and unstable manifolds WS(0, 0) and W~(0, 0) tangent to the eigenvectors (1,/~_)T 
and (1, A+) T, respectively. 

Candidates for FTWs of (1) are rescaled solutions of (9),(10) satisfying (U(s),  V(s ) )  -o (0, 0) as 
s ~ - ~  along We(0,0) when N > 1, or W~(0,0) when N = 1. We now show that the departure 
times along these invariant manifolds are finite in the original z time scale while establishing 
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sufficient regularity required of a weak solution. In what follows, we define the departure time 
e [-c~,  oc] by u(w) = O. 

For N = m + p  = 1, W~(0,0) has the local form V = A+U + o(U), by Hartman-Grobman.  
Hence, 

du _ dU ds _ A+u + o(u) 
dz ds dz u "~ , as u -+ 0 + (13) 

by (6) and (9). Integrating (13) from z = w to z, one obtains mA+(z  - w )  = u m +o(u'~).  Hence, 
w is finite and we have the regularity result 

O, asz (14) 

When N > 1 and we consider solutions departing along We(0, 0), the local form (11) together 
with (6) yield 

_ d g  d s  _ + o = Z__up + o ( u O .  

dz ds dz u m c 

Integrating from z = w to z, one obtains f l ( z - w )  = eu l -p / (1  - p ) + o ( u  l -p)  and again w is finite. 
Consequently, we have the regularity result u(z)  = O((z  - w) 1~(l-p)) as z ~ w +, just as in (14). 

Using the finite time departure in z along W~(0, 0) (N = 1) or We(0, 0) (N > 1), we may 

construct the F T W s  of (1) connecting u = 0 and u = 1. By Lemma 3.1, there exists a unique T W  
(modulo translation) U*(s) of (7) for c = c* > 0 satisfying g*(s)  ---+ 0 as s -+ - o c  and U*(s) ~ 1 

as s --+ oo. Clearly, this solution corresponds to a t rajectory (U*, V*) of (9),(10) leaving (0,0) 
along W~(0, 0) ( g  = 1) or We(0, 0) ( g  > 1) at s = - c ~  and arriving at (1,0) at s = oc. For 
any w E JR, the rescaling (6) now gives rise to a function u* (z), defined for all z >_ w, satisfying 
u*(z) ---+ 0 as z ~ w + and u*(z) ---+ 1 as z ---+ co. Furthermore, the regularity estimate (14) holds 
for u*. Defining the extended function uo~ (z) by 

]" 0, z _< 
(z) Uw [ 

it then follows that  u,~(z) is a weak F T W  solution of (1). Hence, we have the following. 

THEOREM 3.1. Assume (A) holds and let w C R. There exists a unique c* > 0 such that (1) 

has a finite travelling wave solution uo~(z) satisfying u~(z) = 0 for all z <_ oJ and uo~(oo) = 1. 
Furthermore, u~(z) is monotone in z and the regularity estimate (14) holds. 

Note that  by setting vow(z) = u ~ ( - z ) ,  we obtain the negative velocity F T W  referred to in the 
Introduction. Our finite time extinction result for (1),(2) now easily follows. 

COROLLARY 3.1. I f  (A) holds and uo has compact support, then the solution u of (1),(2) has 
compact support  for all t > 0 and there exists a T >>_ 0 such that u(x,  t) -~ 0 for all t >_ T. 

PROOF. First, observe that  u is a subsolution of the linear porous medium equation vt = 
d(v'~+l)x ~ + Cv with the same initial data  (for sufficiently large C > 0) and so by standard 
theory u has compact support for all t _> 0. Second, since u0 ~ 1 and the solution u is classical 
away from u = 0, it follows that  u < 1 in Q. Hence, for any e > 0, we may bound u(x,  e) above 
by suitable translates uo~, (z) and v~ 2 (z). Extinction then follows by comparison for all t _> e and 
the fact tha t  m i n{u~ ,  v~2 } - 0 after some finite time T. | 

REMARK 3.1. Clearly, Corollary 3.1 holds for more general f provided there exists a solution 
of (8) satisfying U* ( -oo )  = 0 and U* (c~) = 1 for some c* > 0. If f has more than one zero in 
(0, 1), then (A3) is a necessary, but  not a sufficient condition for the existence of such a TW. For 
such cases, sufficient conditions are given in [2, Theorem 2.7]. For example, suppose f has three 
simple zeros 0 < a l  < a2 < o~3 < 1 such that  P ( a l )  < P(a2)  < P(1) < 0 and P(a3) < P(a2),  
where P(u)  :=  f o  v m f ( v )  dv. Three applications of [2, Theorem 2.7] over [0, a2], [a2, 1], and [0, 1] 
then yields the required T W  and Corollary 3.1 applies. 
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4 .  A N  E X A M P L E :  N A G U M O ' S  E Q U A T I O N  

Consider the special case where f ( u )  = uP(u - a)(1 - u), where 0 < a,  p < 1, For p = 1, 
(1) is commonly known as Nagumo's  equation, used in modelling electrical pulse propagation in 
nerve axons and in population genetics to model the allele effect [1,4]. As far as we are aware, all 
existing literature on Nagumo's  equation assumes that  p _> 1. The singularity assumption p < 1 
appears to be new. 

A simple calculation shows that  (A) holds if and only if ~ > ~* :=  (N + 1 ) / (N  + 3). Figure la  
shows the finite time extinction of solutions proved in Corollary 3.1 when ~ > ~*. Figure lb  
depicts convergence to the F T W  u~ of Theorem 3.1 and its reflection v~. Note the formation of 
a region ~0 in Q where the solution is identically zero even though the initial data  is everywhere 
positive. Such a region is commonly known as a dead core [11]. 

In the special case N = 1, one can in fact verify that  the F T W  u~ of Theorem 3.1 is given by 
the solution • of the ODE 

du 1 
- ~ u P ( 1  - u), u(w) = 0,  u ( o ~ )  = 1. ( 1 5 )  

dz g z  

~ r t h e r m o r e ,  when m = p = 1/2, (15) admits the explicit solution 

1 

~ 0 . 5  

~ o  

1 

t o o o.1 0.2 o.3 x 0.4 0.5 0.6 0.7 0.8 0.9 1 

• (a) 

1 

~0 .5  

10 

0 0.9 1 t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
x 

(b) 

Figu re  1. N u m e r i c a l  so lu t ions  of (1) for f ( u )  = u P ( u - a ) ( 1 - - u )  w i t h  m = 3, p = 0.5, 
and  a = 0.85 > a* ---- 9/13.  The  t op  f igure i l l u s t r a t e s  f ini te  t i m e  e x t i n c t i o n  wh i l e  t he  
b o t t o m  figure shows t he  emergence  of a dead  core. 



Finite Time Extinction 567 

R E F E R E N C E S  
1. D.C. Aronson and H.F. Weinberger, Nonlinear diffusion in population genetics and nerve pulse propagation, 

In Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, Volume ~6 ,  (Edited 
by J.A. Goldstein), pp. 45-49, Springer-Verlag, New York, (1975). 

2. P.C. Fife and J.B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front 
solutions, Arch. Rat. Mech. Anal. 65, 335-361, (1977). 

3. Ya.I. Kanel', Stabilization of solutions of equations of combustion theory for initial functions of compact 
support, Mat. Sbornik 65 (3), 398-413, (1964). 

4. F. Sanchez-Garduno and P.K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equa- 
tions, J. Differential Equations 117, 281-319, (1995). 

5. Y. Hosono, Travelling wave solutions for some density dependent diffusion equations, Japan J. Appl. Math. 
3, 163-196, (1986). 

6. A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov and A.P. Mikhailov, Blow-up in quasilinear parabolic 
equations, In de Gruyter Expositions in Mathematics, Volume 19, Walter de Gruyter, Berlin, (1995). 

7. G. Reyes and A. Tesei, Basic theory for a diffusion-absorption equation in an inhomogeneous medium, Non. 
Diff. Eqns. Appl. 10 (2), 197-222, (2003). 

8. D.C. Aronson, Density-dependent interaction-diffusion systems, In Dynamics and Modelling of Reactive 
Systems, (Edited by W.E. Steward, W.H. Ray and C.C. Conley), pp. 161-176, Academic Press, (1980). 

9. H. Engler, Relations between travelling wave solutions of quasilinear parabolic equations, Proc. Amer. Math. 
Soc. 93 (2), 297-302, (1985). 

10. J. Carr, Applications of centre manifold theory, In Applied Mathematical Sciences, Volume 35, Springer- 
Verlag, New York, (1981). 

11. R. Kersner, Degenerate parabolic equations with general nonlinearities, Nonlinear Anal. Theory Methods 
Appl. 4 (6), 1043-1062, (1980). 


