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Abstract

We introduce a robust and efficient methodology to solve the Ornstein-Zernike in-

tegral equation using the pseudo-arc length (PAL) continuation method that refor-

mulates the integral equation in an equivalent but non-standard form. This enables

the computation of solutions in regions where the compressibility experiences large

changes or where the existence of multiple solutions and so-called branch points

prevents Newton’s method from converging. We illustrate the use of the algorithm

with a difficult problem that arises in the numerical solution of integral equations,

namely the evaluation of the so-called no-solution line of the Ornstein-Zernike Hy-

pernetted Chain (HNC) integral equation for the Lennard-Jones potential. We are

able to use the PAL algorithm to solve the integral equation along this line and to

connect physical and non-physical solution branches (both isotherms and isochores)

where appropriate.

We also show that PAL continuation can compute solutions within the no-solution

region that cannot be computed when Newton and Picard methods are applied

directly to the integral equation. While many solutions that we find are new, some

correspond to states with negative compressibility and consequently are not physical.

PACS numbers:

Keywords:
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We would like to invite the interested reader to send an email to REB in

order to obtain a copy of the Matlab files used in this study.

I. INTRODUCTION

The Ornstein-Zernike (OZ) relation represents a powerful approach to in-

vestigating the structure and thermodynamics of condensed phases [9]. Dif-

ferent closures must be augmented with the OZ relation in order to obtain a

problem that is soluble and for the case of the hypernetted chain (HNC) clo-

sure it has been noted that the resulting equation exhibits a forbidden region

where no physical real solutions are found for certain density and temperature

conditions [2, 3, 13, 14, 18].

This so called no-solution region has been taken as an approximation to the

liquid-vapour coexistence curve in the past, although it has also been noted

in the cited numerical studies that it does not always appear to be connected

to a divergence of isothermal compressibility, as should be observed when

approaching a coexistence region.

The divergence of the isothermal compressibility that defines the spinodal

line is observed in some integral equations, such as the MSA [5]. In this partic-

ular instance, it has been pointed out that the numerical solution of the integral

equation can differ from the analytical result unless the numerical solution is

obtained with great care, see also [4]. Even more dramatically, an integral

equation that bears a formal resemblance to OZ-HNC has been constructed

in [16] in such a way that there is absolutely no correspondance between the

solutions of the integral equation and the solutions of its discretisation. This

may be a problem when solving integral equations such as OZ-HNC and when

using interatomic potentials such as the Lennard-Jones, since these theories

can only be solved using a numerical approach.

We should like to point out there are three issues regarding the accurate

computation of solutions of any nonlinear integral equation: (1) how that

equation is discretised, (2) how that discretisation is solved subject to a suit-
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ably small error tolerance and (3) how well the numerically computed solutions

actually approximate a true solution of the underlying equation. This paper

only concerns problem (2) from this list, although our discretisation method

from step (1) is a slight improvement on the standard one in that convolu-

tions are computed in a manner that is equivalent to replacing the trapezium

rule with Simpson’s rule. Problem (3) is a problem in theoretical numerical

analysis that is not addressed here at all.

Our numerically-obtained solutions of the OZ-HNC integral equation sug-

gest that the no-solution line results from the divergence of two square root

branch points and the subsequent existence of multiple solutions [2]. In [1] it is

argued that the existence of this behaviour in the numerical realisation of the

OZ-HNC equation is logically consistent with the existence of a true spinodal

in the OZ-HNC equations. Another study [13] argues that the no-solution

region is connected to the onset of complex solutions, although this property

is simply a consequence of the existence of branch points.

In this article we discuss a very general methodology that has existed for

over thirty years in the numerical mathematics literature [10] and apply it to

the Ornstein-Zernike equation. We illustrate its use with the HNC closure,

but we would like to emphasise that the method is completely general and can

be used with other closures too. One of our aims is to develop a method that

is robust in the vicinity of the no-solution line and in regions where compress-

ibility exhibits large changes, including divergence due to the existence of a

critical region.

There are a number of algorithms that are suitable for such ‘bifurcation

problems’. One of these is the pseudo-arc length (PAL) continuation method

and we show that the implementation of this method and the reformulation

of the HNC integral equation in a non-standard manner results in an efficient

methodology that can be easily employed to investigate the no-solution line.

This method resolves many of the deficiencies associated with Newton and

Picard methods and enables one to find solutions that cannot be found using

the latter methods directly.
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The structure of the paper is as follows. First we introduce the problem and

briefly discuss the origin of the limitations of the traditional Newton method

when applied to problems with branch points. There follows a discussion of the

numerical implementation of the arc-length continuation method and we then

present our results for the OZ-HNC integral equation using the Lennard-Jones

potential, our conclusions close the paper.

II. THE ORNSTEIN-ZERNIKE EQUATIONS, NEWTON’S ALGO-

RITHM AND BIFURCATIONS

The Ornstein–Zernike (OZ) equation with hypernetted chain (HNC) closure

is the following problem: find functions h and c such that

h(r) − c(r) = ρ

∫

R3

h(‖x − y‖)c(‖y‖)dy, (1)

h(r) = −1 + e−βu(r) · eh(r)−c(r). (2)

Here x and y are vectors in three-dimensional space, r = ‖x‖ is the radial

coordinate where ‖(x1, x2, x3)‖ = (x2
1 + x2

2 + x2
3)

1/2 is Euclidean distance, ρ

is the mean particle density, β = 1/(kBT ) is the Boltzmann factor, T the

temperature and u(r) is the intermolecular potential. The total (h) and direct

(c) correlation functions yield the indirect correlation function γ = h− c and,

using this definition, equations (1-2) can be re-written as a single integral

equation of the form

γ = ρ(f + e−βu(exp γ − 1)) ∗ (f + e−βu(exp γ − 1) − γ), (3)

where f(r) = −1 + e−βu(r) is the Mayer f-function and ∗ denotes convolution.

Isothermal compressibility κT is defined by

κT =

(

(ρkBT )(1 − 4πρ

∫ ∞

0

r2c(r)dr)

)−1

, (4)

the value of which is obtained numerically by evaluating
∫ R

0
r2c(r)dr for a

large value of R and when plotting the results of computations we shall use
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the normalised inverse compressibility χ−1, where

χ =
1

1 − 4πρ
∫ ∞

0
r2c(r)dr

= 1 + 4πρ

∫ ∞

0

r2h(r)dr. (5)

The OZ-HNC equation may therefore be written as a single equation of the

form

γ = ρN(γ, β), (6)

where N is a suitably-defined nonlinear function, which is convenient for the

presentation of numerical algorithms. For instance the Picard method is given

by

γn+1 = ρN(γn, β), γ0 an initial guess, (7)

and this algorithm is assured to converged if ρ > 0 is sufficiently small. How-

ever (6) will not converge if ρ nears the critical density.

A. Preliminary: Newton’s Algorithm and Bifurcations

The OZ equation coupled with any closure relation is an example of a

nonlinear integral equation that one cannot solve analytically for most inter-

molecular potentials. Its solution structure possesses subtleties that depend

on the choice of potential and on physical parameters such as density and tem-

perature. Moreover, as those parameters are varied the number of solutions

of the equations changes. The mathematical parlance for the parameter value

at which such a change is observed is called a bifurcation point; this paper is

a response to the need for a numerical code that can locate bifurcations or

spinodals (which is a type of bifurcation) of the OZ-HNC equation in an auto-

mated fashion, given that Newton’s method alone applied to the OZ equation

can locate neither bifurcation points nor spinodals.

Newton’s method is designed to solve a very general, possibly high-

dimensional equation of the form

F (γ) = 0, (8)
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by taking an initial guess γ0 and refining through the sequence of iterates

defined by

γn+1 = γn − dF (γn)
−1F (γn). (9)

In fact this process is commonly used in studies of the OZ equation, but

the algorithm requires a fundamental property to hold so that the sequence

of iterates (γn) can be obtained: at a solution γ∗ whereby F (γ∗) = 0, it

must be the case that the matrix of partial derivatives of F (γ) at γ = γ∗,

denoted dF (γ∗), is an invertible or non-singular matrix (one that has a non-

zero determinant). Note that A
−1 is used here and throughout to denote the

inverse of a matrix A.

However, if F is used to represent the OZ equation with HNC closure then

Newton’s method will not work near a candidate spinodal or near the critical

region because the matrix dF (γ∗) will always turn out to be singular in this

region. Picard iterations are also commonly used in the literature, but these

are just special cases of Newton iterations and so they will not work in these

regions.

In order to obtain as much detail of the solution structure as possible,

we adopt the pseudo arc-length (PAL) strategy that is due to Keller and

others that is now a common tool in bifurcation analysis within the scientific

community [7, 10]. Indeed, these techniques have already been used in a

density-functional framework, as can be seen in [8] whose authors emphasize

the need for the application of bifurcation-based tools in the study of integral

equation theories of phase transitions.

Before continuing, we remark that the continuation method described in [17]

is termed natural parameter continuation in the numerical analysis literature

and what we propose is quite different. Also, the term continuation method is

often used for any algorithm that can cope with the presence of bifurcations

and other instabilities.

In this paper we explain how one can alter the formulation of Newton’s

method to locate spinodals if they are present, to locate pseudo-spinodals, a

term that is defined below, and to find the location of pseudo-spinodals as a
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function of temperature and density. The algorithms are relatively fast in the

sense that they run in Matlab on a single processor Pentium 4(2.6GHz, 2GB

RAM) machine with up to 218 mesh points, using the fast-Fourier transform (in

the west) FFTw to implement convolution and we use the matrix-free linear

solver GMRES that is available as a standard part of the Matlab environment

in order to find the Newton updates as defined in (9). To locate a single

solution takes of the order of seconds to minutes, depending on the size of the

numerical mesh used for the computations.

For illustrative purposes we have presented two scenarios in Figure 1 that

would prevent Newton’s algorithm from converging when applied to the OZ-

HNC equation: one (C1) is a branch point, fold bifurcation or pseudo-spinodal

(terms that we consider to be synonymous, although we prefer the term branch

point) that is not associated with the divergence of compressibility but is

related to a numerical instability because compressibility is large in some sense;

and another (C2) is a spinodal along which compressibility does diverge. The

former is so named because of the folded geometry of the solution curve near

the point BP and this arises because two solutions of the equations are present

for 0 ≤ ρ < ρBP.

It is near the label BP that Newton’s method would fail because if ρ were

just a little less than ρBP, the fact that two solutions are to be found so close to

each other creates a vertical tangent at BP that causes a numerical instability

for (9). A similar comment applies to the isothermal solution branch C2 where

the instability arises because of the asymptotically vertical tangent of the graph

at the spinodal.

FIG. 1: Schematic of a branch point, fold bifurcation or pseudo-spinodal in C1 and

an isothermal solution branch C2 with a spinodal.
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III. LOCATING A SPINODAL: THE PROBLEM

When seeking a spinodal of the OZ-HNC equation, we require solutions

that satisfy the condition

1 − 4πρ

∫ ∞

0

r2c(r)dr = 0. (10)

However, a solution pair (h, c) of (1-2) that satisfies (10) also satisfies
∫ ∞

0
r2h(r)dr = ∞ and so can be shown to be associated with an inherent

numerical instability.

It therefore seems natural to try and locate a spinodal by obtaining solutions

of (1-2) at low density to begin with, which can be done very easily using a

Picard iteration for any potential and temperature. Then, by slowly increasing

density and holding temperature fixed, one can track the branch of isothermal

solutions as closely as possible to a desired spinodal.

However, this approach is doomed to fail if one uses an unmodified Newton

method on (1-2) because of the high sensitivity of the solutions to changes in

density as one nears the spinodal. One must therefore reduce the incremental

changes in density in a fashion that is commensurate with the increases in the

integral of h and γ as one nears a branch point or a spinodal.

In [2, 3, 13, 14, 18] the authors have applied a bare Newton method (al-

though sometimes the authors use Picard methods) to study the number of

solutions of the OZ equations. While such an approach will be successful

away from the critical region, as temperature nears its critical value for, say,

9 (August 2, 2006)



a Lennard-Jones fluid, Newton methods applied to OZ with any closure must

cease to converge. Below the critical temperature, a Newton method will also

fail unless the values of the density parameter are carefully chosen to ensure

that the solution one is seeking is some way away from any spinodal or pseudo-

spinodal that may be present.

A. Locating a spinodal: the solution

In order to compute as close to a spinodal as possible we undertake the fol-

lowing operation that is depicted in Figure 2. The procedure begins by treating

OZ-HNC (or OZ with any closure) as an equation not just for the correlation

function γ but one also considers ρ to be an unknown, but temperature is held

at a fixed value.

Thus we have the equation γ = ρN(γ, β) with two unknowns γ and ρ. We

now augment this problem with a new equation and therefore replace equation

(6) with the pair

G(γ, ρ, s) := (γ − ρN(γ, β), α(γ, ρ, s)) = (0, 0), (11)

where we have added a new unknown s and an auxiliary function α. The

function α merely serves as a way of parameterising any solution curve of

(6) in (γ, ρ)-space with the auxiliary parameter s that acts as an arc-length

variable for this purpose. In [6, 10] one can find the mathematical details of

how and why this is done.

There are two points two be made: firstly, by a judicious choice of α we will

be able to solve equation (11) for (γ, ρ) as a function of the artificial parameter

s; secondly, we shall do this in such a way that equation (11) can be solved

even when one cannot solve (6) easily using Newton’s method for the unknown

γ. The reason for this is that Newton’s method can fail to find solutions even

when they are there; this is not a purely numerical issue but one associated

with a change in the solution structure of the underlying equations. Typically,

when two solutions are too close together to allow a sufficiently good initial

guess to be found then Newton cannot easily proceed as this closeness property
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renders the linear system in the Newton iteration numerically ill-conditioned or

near-singular. Precisely this situation occurs at a branch point of the OZ-HNC

equations.

The point is that when applying a Newton method to (6), the inherent

instability of being close to a spinodal forces a numerical instability that ren-

ders the linear system within the Newton iteration (given by (9)) a singular

linear system. However, one can choose α in such a way that when applying a

Newton method to (11), the associated linear system of that Newton method

is non-singular.

FIG. 2: Consider a known solution (γ1, ρ1) on a near-spinodal isothermal solution

branch C. In order to locate the solution (γ2, ρ2), begin by finding the tangent

direction of the curve at (γ1, ρ1) and use this to locate a suitable nearby initial

guess or linear predictor (γp, ρp). Now use (γp, ρp) as an initial guess for a Newton

iteration whose iterates remain in the plane Π and converge to (γ2, ρ2); the normal

vector of Π is the previously computed tangent direction.

Figure 2 gives a geometric description of this method. Given a solution

γ1 at ρ = ρ1 on a solution curve C, so that γ1 = ρ1N(γ1, β) and (γ1, ρ1)

is a vector pair that lies on C, one predicts where a nearby solution on the

solution branch will be located by looking a small distance, ds say, along the

tangent direction of the curve. This gives an initial guess or predictor (γp, ρp)

for a Newton method that is constructed in such a way that the iterates of

that method lie within a plane Π whose normal direction coincides with the

11 (August 2, 2006)



previously computed tangent direction. This Newton method is iterated to

convergence in order to locate (γ2, ρ2) and the use of the tangent vector along

C automatically adjusts for the fact that the curve steepens in the sense that

the size of dγ/dρ increases along C near the spinodal.

In order to complete the description of the methodology we have to provide

the form of the function α in (11). This we do in the next section.

B. Arc-Length Continuation

As C is a one-dimensional curve we may parameterise it by arc–length s.

In principle, there are many possible choices for the function α in (11), but

the one used in practise is the linearised or pseudo arc-length constraint given

by (again see [10])

α(γ, ρ, s) = s0 · (γ − γ0) + σ0(ρ − ρ0) − (s − s0),

where a dot denotes the inner product of two vectors, as in (x1, x2, .., xn) ·

(y1, y2, ..., yn) =
∑n

i=1 xiyi. Moreover, (s0, σ0) is the unit tangent vector at a

given point on the solution curve C and we assume the existence of a known

solution on C so that G(γ0, ρ0, s0) = 0, where G is defined in (11).

The full algorithm thus has the following steps, where ds assumes a fixed,

small value:

(P1) Choose ρ0 to be sufficiently small that Picard iteration will converge, set

s0 = 0 and find (γ0, ρ0) ∈ C using Picard.

(P2) Given a solution (γk, ρk) ∈ C at the arc–length parameter sk, let sk+1 =

sk +ds and find the unit tangent vector to C by solving the linear system

of equations

∂γG(γk, ρk, sk)γ + ∂ρG(γk, ρk, sk)ρ = −∂sG(γk, ρk, sk)

for (γ, ρ) and then define a unit vector (sk, σk) by

sk =
γ

√

‖γ‖2 + ρ2
, σk =

ρ
√

‖γ‖2 + ρ2
.
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(P3) Apply Newton iteration to G(γ, ρ, s) = 0 with initial guesses γ = γk +

ds·sk and ρ = ρk+ds·σk and denote the solution thus found (γk+1, ρk+1).

The algorithm (P1-P3) is still based on Newton’s method and both steps

(P2) and (P3) require the use of a linear solver and one could use, say, Gaussian

elimination (or LU-decomposition) applied to the derivative matrix of (11).

However, this would be extremely inefficient as it requires the derivative matrix

to be constructed and then inverted, so instead we use the GMRES algorithm.

As is discussed in [12], this is appropriate for integral equations like OZ-HNC

and has the particular advantage of never needing to form the derivative matrix

of (11) when applying Newton’s method within the PAL algorithm.

In practise, ds has to be chosen small enough so that the Newton iteration

described in the previous paragraph converges. We altered the value of ds so

that if this iteration required a small number of Newton steps then ds would

be increased by a fixed factor, reducing ds if the number of iterations were

too high; this is especially helpful as the algorithm nears a branch point or

spinodal. In practise, we used 0.1 for ds when ρ is small, which decreased to

as small as ds = 10−2 or 10−3 when passing through branch points.

If ds is sufficiently high and two solution branches are to be found suffi-

ciently close together, this may permit the PAL algorithm to jump from one

solution branch to another; it is this property that initially lead us to finding

solution branches of negative compressibility. However, using the Newton-

GMRES code detailed in [11, 12] that has also been written in Matlab, we

were in fact able to choose temperature and density within the no-solution

region and locate such a non-physical solution with little difficulty. This is be-

cause the Newton algorithm of [11, 12] (that, note, can be downloaded as the

Matlab m-file oz.m located at http://www4.ncsu.edu/~ctk/newtony.html)

always converges to some solution, irrespective of the density that we chose,

and this solution was then continued to form an entire isothermal solution

branch using the PAL algorithm.
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IV. PSEUDO-SPINODALS

One can exploit one of the properties of matrices that leads to non-

convergence of Newton’s method (9) in order to track the precise location

in the (ρ, β)-plane of where OZ-HNC will possess pseudo spinodals. Now, a

matrix A is singular if there is a non-zero vector k such that Ak = 0 and New-

ton’s method applied to OZ-HNC will fail if the matrix of partial derivatives

of γ − ρN(γ, β) is singular when viewed as a function of γ.

We can apply this idea to (3) as follows: let us find (k, γ, ρ) such that











γ − ρN(γ, β)

(I − ρ∂γN(γ, β))k

‖k‖2 − 1











=











0

0

0











, (12)

where A corresponds to the matrix of partial derivatives I − ρ∂γN(γ, β) and

I is the identity matrix. The first equation in (12) is a repetition of (3),

the second ensures that when Newton’s method is applied to (3) it cannot

converge: in effect we are using the second equation in (12) to impose the

condition that the matrix which is formed from the linearisation of the OZ

equation (3) is a matrix the possesses a non-zero null-vector and is therefore

a singular matrix. This is precisely the condition that prevents Newton from

converging. The third equation in (12) is the condition that k is non-zero,

where ‖k‖2 =
∑n

i=1 k2
i is used to denote Euclidean distance-squared of the

vector k = (k1, ..., kn).

One could reformulate (12) as the following equivalent system of equations





γ − ρN(γ, β)

det(I − ρ∂γN(γ, β))



 =





0

0



 , (13)

where det denotes the determinant of a matrix. However, (13) would not

provide for an efficient numerical implementation due to the presence of the

determinant.

By solving (12) one obtains the boundary of theoretical convergence of

Newton’s method applied to (3) in the (ρ, β)-plane which is the locus of branch
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points. One can apply either a standard Newton method to (12) with β fixed,

or one can use the PAL algorithm in case the approximated curve of branch

points has a particularly complicated structure; we have used both approaches

in practise.

V. NUMERICAL RESULTS

Before we give the results of our numerical computations, one further re-

mark is in order. When seeking approximate solutions of the OZ-HNC equa-

tion, the only element of the problem that requires discretisation is the con-

volution operator. To achieve this one uses the fact that convolution can be

written using the Fourier transform as

a ∗ b = H−1(Ha · Hb), (14)

where a, b are two given functions and H denotes the spherical Hankel trans-

form (the Fourier transform of radially symmetric functions).

It is standard practise in numerical studies of the OZ-HNC equation to

truncate the interval of integration in the definition of the Hankel transform

to a finite interval [0, R] when solving (1-2). So, given that

(Ha)(s) = 4π

∫ ∞

0

sinc(rs)r2a(r)dr

and the given inverse transform (H−1a)(s) = 1
8π3 (Ha)(s), if we define

(H
R
a)(s) = 4π

∫ R

0

sinc(rs)r2a(r)dr

and (H−

R
a)(s) = 1

8π3 (HR
a)(s), we can formulate the equation that is to be

solved numerically using the PAL algorithm:

γ = ρH−

R

(

H
R
(f + e−βu(exp γ − 1))

× H
R
(f + e−βu(exp γ − 1) − γ)

)

. (15)

In practise we shall solve (15) approximately, exploiting the FFT in our nu-

merical calculations at every opportunity. One significant difference with our
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discretisation (that we do not detail here) and the ones used in all other cited

references is the fact that we employ one step of a Richardson extrapolation

procedure to obtain O(n−4) error estimates for solutions of (15), where n is

the numerical mesh size, rather than the O(n−2) estimates that are usually

obtained. The penalty for this is that while second-order accuracy can be

obtain by performing convolution with three FFT operations, our method re-

quires five such operations, but this can be achieved without compromising the

O(n log(n)) complexity of the FFT-based numerical convolution algorithm.

A. Computations

The purpose of this section is to illustrate the applicability of the PAL

algorithm (P1-P3) to trace solution branches of the OZ-HNC equation with the

Lennard-Jones (LJ), Double Yukawa (DY) and Triple Yukawa (TY) potentials,

where the Yukawa potentials are chosen to fit the Lennard-Jones potential. For

completeness let us define the Lennard-Jones potential

uLJ(r) = 4ǫ((σ/r)12 − (σ/r)6). (16)

The potential well depth ǫ and the particle diameter σ are used to define the

thermodynamic quantities in reduced units: ρ∗ = ρσ3, T ∗ = kBT/ǫ = 1/(ǫβ).

For the numerical calculations we use a numerical mesh size of n = 212 + 1

points unless otherwise stated. A relative error tolerance of 10−11 in the so-

called maximum vector length or norm [19] was used to measure errors for the

Newton iterations that were performed.

Figures 3, 4, 5 and 6

Our first set of computations is best illustrated by comparing Figures 4, 5

and 6, where temperature is held fixed in each computation (at T ∗ = 1.6, 1.408

and 1.3 respectively). We have computed the variation of inverse isothermal

compressibility with respect to density, ρ∗, as well as the total correlation

functions corresponding to three representative thermodynamic states. As the
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temperature decreases the critical temperature of the Lennard-Jones model is

approached and this is reflected in values of the inverse compressibility which

develops a minimum at a value of ρ∗ somewhere between 0.25 and 0.3.

As temperature is reduced further, Figure 6 illustrates the creation of two

disconnected solution branches: vapour at low densities and liquid at high

densities. Note the W-shaped nature of the vapour isotherm whereby several

apparent branch points are present in the region of zero inverse compressibility.

This is the reason for the nomenclature pseudo spinodal that we have associated

with the the branch points as χ−1 is typically close to zero when they occur.

Figure 6 also shows that one can in fact have an apparently genuine spinodal

within the HNC approximation in the sense that the compressibility as it is

defined in this paper diverges to infinity. This occurs nonetheless in a manner

that corresponds to an unphysical variation of compressibility with respect to

changes in density.

The results presented above illustrate the power of the numerical approach

desribed in this paper. In previous investigations such as [2, 13] the crossing of

inverse compressibility from positive to negative values was not reported. In

one of these investigations negative compressibilites were reported but these

resulted from a complex-valued solution that itself stems from the existence

of a branch point. Figure 6 shows that it is perfectly possible to connect the

range of negative values with the positive ones in a continuous fashion along

isothermal solution branches of real-valued solutions.

One may ask how two solution branches can appear at low temperatures

where only one was present at high temperatures. The answer to this lies in the

fact that there is another solution branch that exists at the parameter values

used in Figure 4, but it is not plotted in this figure for clarity as it only contains

solutions of negative compressibility. We have illustrated this phenomenon in

Figure 3 where supercritical and subcritical isotherms are labelled (1) and

(2) respectively: note that there are two supercritical isotherms labeled (1)

that have been computed at T ∗ = 1.41, one has positive and one negative

compressibility. It may be instructive to compare Figure 3 with [14, FIG.4].
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FIG. 3: Four representative isothermal pairs of solution branches where R = 20σ and

n = 210 + 1: the two isotherms labeled (1) are supercritical (both isothermals have

been computed with T ∗ = 1.41) whereas the others are for subcritical temperatures.

It is very important to realise that the phenomena desribed in this section

are associated with solutions of the numerical or computational realisation of

the OZ-HNC equations (15) and not necessarily with the OZ-HNC equations

themselves; the mathematical reasons for this are explored in detail in [1]. For

example, it is easy to see from the convolution theorem applied to OZ that it

is impossible for a continuous solution of (1) to be realised with zero inverse

compressibility, yet it is possible to locate continuous solution of (15) with zero

inverse compressibility. This comment is central to the design of qualitatively

correct discretisation methods for the OZ equation with its various closures,

but the analysis that leads to such methods is beyond the scope of this paper.

Figure 7

Although our next computation has a small numerical mesh with only n =

1025 points and also has a low cut-off value of R = 20σ with T ∗ = 1.2, we

have included it to further illustrate the point made in the previous section

regarding solutions of negative compressibility. One can see in Figure 7 that

we have found many solutions that do indeed have negative compressibility

18 (August 2, 2006)



FIG. 4: Inverse isothermal compressibility plotted against density at temperature

T ∗ = 1.6 for the Lennard-Jones potential (so that T ∗ is greater than T ∗
c ≃ 1.4)

where R = 80σ and n = 212 + 1. Three correlation functions, r2h(r), are presented

at density values: (a) ρ∗ = 0.1, (b) ρ∗ = 0.270 and (c) ρ∗ = 0.55.
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within the so-called no-solution region that are easily located using the PAL

algorithm, employing the code from [11] to locate initial points on the branches.

The same figure also contains two solution branches of (partially) positive

compressibility.

The correlation function r2h(r) is indicated in Figure 7(a) at a point on

the vapour isotherm before the first branch point and correlation functions

computed on other solution isotherms are also shown. Note in particular

Figure 7(b) showing the unphysical nature of r2h(r) for large values of r.

The vapour solution branch in Figure 7 emanates from the point (γ, ρ) =

(0, 0) with unit compressibility and this branch extends to higher densities,

but it then continues into the region of negative compressibility at around

ρ = 0.12. It has been reported in the literature that compressibility remains

finite in numerical computations when approaching the no-solution region [2,

3, 14, 17, 18], indicating that this region is not linked to a phase transition. Our

computations indicate that in fact there are numerical solutions that have zero
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FIG. 5: Inverse isothermal compressibility plotted against density at temperature

T ∗ = 1.408, (T ∗ just above T ∗
c ), for the Lennard-Jones potential, R = 80σ and

n = 212 + 1. Three correlation functions, r2h(r), are presented at density values:

(a) ρ∗ = 0.1, (b) ρ∗ = 0.270 and (c) ρ∗ = 0.55.
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inverse compressibility, but that they occur on isothermal solution branches

beyond the first branch point.

Figure 8

Figure 8 illustrates the effect of increasing the cutoff R. In this case we have

used n = 212 + 1 and R = 120σ; this plot refines the left-hand branch shown

in Figure 7. It is important to note that the increase in accuracy has resolved

a number of branch points that were missed when using too coarse a mesh in

Figure 7, leading to a W-shaped solution branch with three pseudo spinodals.

This is reminiscent of behavior found by Belloni for different potentials [2].

The right hand plots show the total correlation functions of two solutions that

are located at the same density either side of a branch point, (a) is a perfectly

feasibly physical solution, whereas (b) is not.

Note that we have illustrated solutions that are situated precisely upon the

branch point itself in Figure 10 of the next section and in Figure 12 at the end
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FIG. 6: Inverse isothermal compressibility plotted against density at temperature

T ∗ = 1.3 (so that T ∗ < T ∗
c ) for the Lennard-Jones potential with R = 80σ and

n = 212 + 1. Two correlation functions (r2h(r)) are presented at density values :

(a) ρ∗ = 0.1, (b) ρ∗ = 0.270 NO SOLUTION and (c) ρ∗ = 0.55.
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of the paper for computations undertaken for the Yukawa potentials.

Figures 9 and 10

Figure 9(a) shows a computed locus of branch points as defined in section

IV, that is, the locus corresponds to the density-temperature pairs for which a

branch point is observed and this curve coincides with the one obtained using

different algorithms in [13].

While the form of this branch point locus is similar for all of the cut-

off values (R = 20σ, 40σ, 80σ) that we chose, the values taken by χ−1 along

this locus are sensitive to R, as can be seen in Figure 9(b). Each of the

curves should, ideally, be very close to zero but they are in fact both above

and below zero, depending on the density. The reason for this can be seen in

Figures 6 and 7 where the branch point on the vapour branch occurs at positive

compressibility before a spinodal is observed, whereas the branch point on the

liquid branch occurs at negative compressibility, after an apparent spinodal

21 (August 2, 2006)



FIG. 7: Inverse isothermal compressibility plotted against density at temperature

T ∗ = 1.2 for the Lennard-Jones potential, where R = 20σ and n = 210 + 1. Three

solutions, r2h(r), are presented on each curve at: (a) ρ∗ = 0.084, (b) ρ∗ = 0.419

and (c) ρ∗ = 0.509. Solutions for (a) and (c) are clearly seen to lie on the positive

χ-part of the vapour and liquid branches.
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has already been observed.

Examples of the total correlation functions r2h(r) computed along the two-

parameter parabolic curve from Figure 9 are presented in Figure 10: (A)

represents solutions in the vapour region, (B) is at apex from Figure 9(a) and

(C) is representative of the liquid region. It is clear in Figure 10(C) that liquid

solutions are particulary sensitive to the cut-off value R, although vapour and

near-critical solutions are not affected to the same extent.

B. Double Yukawa and Triple Yukawa Potentials

Figures 11 and 12

We also considered the Double Yukawa potential (DY) and Triple Yukawa

potentials, respectively (17) and (18) below. The parameters used in (17) taken

from [15] are A1 = 1.6438σ, z1 = 14.7σ−1, A2 = 2.03σ and z2 = 2.69σ−1; we

22 (August 2, 2006)



FIG. 8: Inverse isothermal compressibility plotted against density with T ∗ = 1.2

for the Lennard-Jones potential, where R = 120σ and n = 212 + 1. Two solutions,

r2h(r), on each curve are presented at: (a) ρ∗ = 0.1127 and (b) ρ∗ = 0.1122.

Solution (a) located at upper circle in left-hand plot and (b) located at lower circle.
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FIG. 9: (a) Locus of branch points and (b) inverse compressibility values for the

Lennard-Jones potential for varied cut-off values, R, and n = 212+1 points. Legend:

R = 80σ (solid), R = 40σ (dash-dot), and R = 20σ (dashed line).

(a) (b)

recall that σ = 1 is used throughout. Similarly, the parameters for the Triple

Yukawa potential are c1 = 2.351σ, z3 = 13.446σ−1, c2 = 0.910, z4 = 3.482σ−1

and z5 = 1.317σ−1 in (18). In contrast to the Lennard–Jones potential which

has algebraic decay, the double–Yukawa and triple Yukawa potentials decay
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FIG. 10: Distribution functions r2h(r) at locations along the branch point locus

from Figure 9 for cut-off values R = 20σ, 40σ and 80σ, using n = 212 + 1 points and

the Lennard-Jones potential: (ρ∗, T ∗)= (0.122,1.23) (A), (0.275,1.407) (B), and (C)

(0.503,1.170). Note that (B) represents solutions at the critical apex of the locus of

branch points from Figure 9.

(A) (B)

(C)

exponentially and are given as follows:

uDY (r) =
ǫ

r

(

A1e
−z1(r−σ) − A2e

−z2(r−σ)
)

(17)

and

uTY (r) =
c1ǫ

r

(

e−z3(r−σ) − c2e
−z4(r−σ)

−(1 − c2)e
−z5(r−σ)

)

. (18)

The purpose of these computations is to compare the loci of branch points

of all three potentials and to investigate whether it is the relatively slow decay

of the tail of the Lennard-Jones potential that is responsible for the large

values taken by χ−1 along this loci as shown in Figure 9.

The reason for doing this is that this figure gives a measure of how close a

branch point or pseudo-spinodal is to representing a true spinodal. As can be
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FIG. 11: (a)Locus of branch points for the (A) Lennard-Jones (B) Double Yukawa

and (C) Triple Yukawa potentials for cut-off value R = 80σ and n = 212 + 1 points.

(b) Inverse compressibility values along the above locus of branch points for LJ, DY

and TY potentials.

(a) (b)

seen in Figure 11(b), the loci of values taken by χ−1 are qualitatively similar

for all three potentials, as is the form of the branch point locus shown in Figure

11(a). We therefore conclude that it is not the slow decay of the tail of the

Lennard-Jones potential that leads to the poor approximation of spinodals

by branch points. For further comparison with the Lennard-Jones case, we

have included Figure 12 which plots the total correlation functions taken from

vapour, critical and liquid regions of the branch point curve Figure 11(a) for

both double and triple Yukawa potentials.

VI. CONCLUSIONS

We have introduced an automated numerical methodology to solve the

Ornstein-Zernike equation at different temperatures and densities and have

focused on the HNC closure relation and the Lennard-Jones potential as a

case study. We have shown that by employing the pseudo arc-length contin-

uation method one can compute solutions that are not possible to find when

applying Newton or Picard methods directly. Moreover, our approach confirms

previous analyses of the OZ-HNC equation that have suggested the existence
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FIG. 12: Plots of r2h(r) at various locations along the two-parameter branch point

locus from Figure 11 for the DY(a) and TY(b) potentials: (ρ∗, T ∗)= (0.122,1.23)

(A), (0.275,1.407) (B) and (0.480,1.210) (C). Label (B) represents solutions at the

apex of the branch point locus from Figure 11(a).

(a) (b)

of square root branch points separating physical and unphysical solutions.

One advantage of PAL continuation is that it can pass through branch

points in a continuous fashion which represents the main improvement over

previous approaches. Interestingly, we have found real solutions within the

so-called no solution region. However, the solutions do not connect with the

branch points and have negative compressibility and are therefore unphysical.

Moreover, we have been able to compute solutions of zero inverse com-

pressibility on both liquid and vapour branches for potentials with an attrac-

tive tail, provided that temperature is sufficiently low. The vapour solution

branch shows W and S-shaped structures at low temperature with as many as

three solutions for a given density each with positive compressibility, provided

that the cut-off parameter R used in the discretisation of (15) is sufficiently

large.
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