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Abstract

We prove a Hopf bifurcation result for singular differential-algebraic equations (DAE)
under the assumption that a trivial locus of equilibria is situated on the singularity
as the bifurcation occurs. The structure that we need to obtain this result is that the
linearisation of the DAE has a particular index-2 Kronecker normal form, which is
said to be simple index-2. This is so-named because the nilpotent mapping used to
define the Kronecker index of the pencil has the smallest possible non-trivial rank,
namely one. This allows us to recast the equation in terms of a singular normal form
to which a local centre-manifold reduction and, subsequently, the Hopf bifurcation
theorem applies.
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1 Introduction

We begin with some definitions: let F : Rn+1 → Rn be a C∞ map where n ≥ 3
and suppose F (0, µ) = 0 for all µ ∈ R. Suppose also that A : Rn+1 → L(Rn)
is a smooth mapping where L(X) denotes the space of linear maps from X
to itself. A singular solution of a quasi-linear differential-algebraic equation
(DAE) is encapsulated in the following definition which is given in the context
of a one-parameter family of DAEs parameterised by a real parameter µ.

Definition 1 The quasi-linear DAE

A(x, µ)ẋ = F (x, µ), ((x(0), ẋ(0)) given), (1)

is said to have a singular solution x0(·) at µ = µ0 if x0 : (α, ω) → Rn satisfies

A(x0(t), µ0)ẋ0(t) = F (x0(t), µ0), (∀ t ∈ (α, ω)),
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and there are t1, t2 ∈ (α, ω) such that

n = rank(A(x0(t1), µ0)) 6= rank(A(x0(t2), µ0)). (2)

The purpose of this note is to demonstrate the existence of conditions under
which one can formulate a Hopf bifurcation theorem for such quasi-linear
differential-algebraic equations (DAEs) with a singularity of the form (2),
hence yielding DAEs with smooth periodic orbits that intersect the singularity

Sµ := {x ∈ Rn : det(A(x, µ)) = 0}.

Motivation for this work can found in [3] where discrete-time implicit systems
are shown to possess a family of quasi-invariant circles when the appropriate
Neimark-Sacker conditions are satisfied by the linearisation of the problem.
The main bifurcation result of [3] is proven in the absence of the existence
of unique forward orbits by extending the centre manifold theorem appropri-
ately which then allows one to apply standard bifurcation theorems. This note
establishes an analogous Hopf bifurcation result for continuous-time systems
of DAEs by imposing a simple index-2 structure on the linearisation which
ensures that we can rely on the existing centre manifold theorem for smooth
differential equations [6].

Hopf bifurcation theorems for DAEs in various guises do already exist [8,7,10]
but none of the results of those articles apply to the class of DAE studied here.
Singular Hopf bifurcations also arise in the context of singularly perturbed,
ordinary differential equations [1,2] and these give often rise to relaxation
oscillations but what we have in mind here is quite different, despite the similar
nomenclature.

It is known [11] that almost-all singular solutions of (1) are non-smooth on
their domains of definition and that they terminate at the singularity Sµ at
either forward or backward impasse points. This means that smooth singular
periodic solutions, meaning C1 or greater on their interval of existence, can
only exist if the set of pseudo-equilibria Pµ = {x ∈ Sµ : F (x, µ) ∈ im(A(x, µ))}
is non-empty as any singular periodic orbit Γ must satisfy Γ ∩ Sµ ⊂ Pµ. This
is clear from equation (1) for if Γ ∩ Sµ ⊂ Pµ fails somewhere and x(ts) ∈
(Γ∩Sµ)\Pµ, A(x(ts), µ)χ = F (x(ts), µ) has no solution χ and so the derivative
ẋ(ts) must fail to exist at some point along the solution x(t).

From a geometric point of view, the singular periodic orbit Γ must form two
connections between two distinct points on Pµ and as the singularity is gener-
ically a codimension-1 submanifold of Rn, Γ\Sµ will contain at least two com-
ponents, one either side of the singularity. This is illustrated in Figure 1 where
P is a manifold of pseudo equilibria and S is the singularity. As pictured, so-
lution uniqueness typically breaks down at pseudo equilibria [5] and one can
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only claim as a result that a singular periodic orbit Γ forms a quasi-invariant
set, defined for completeness as follows.

Suppose that {φ(t, x)}x∈M for α(x) ≤ t ≤ ω(x) is a set of solution trajectories
of the DAE F (x, ẋ) = 0 for each x ∈ M ⊂ Rn in the sense that x(t) =
φ(t, x(0)) are solutions:

F

(
φ(t, x),

∂φ

∂t
(t, x)

)
= 0

for all (t, x); the mapping φ satisfies φ(0, x) = x for all x for which φ is defined.
A set Q ⊂ M is said to be quasi-invariant if there exists at least one x̄ ∈ Q
such that φ(t, x̄) ∈ Q for all α(x̄) ≤ t ≤ ω(x̄). An invariant set Ω ⊂ M is one
such that φ(t, x) ∈ Ω for all t ∈ [α(x), ω(x)] and all x ∈ Ω.

Fig. 1. A periodic orbit Γ connects pseudo equilibria to each other and encircles
an equilibrium. Forward uniqueness of solutions typically breaks down at P, even
though smooth solutions do exist there.

S

S

P Γ

Forward non-uniqueness properties of singular periodic solutions are observed
in very simple DAEs such as

ẋ = y, (3)

0 = x2 + y2 − 1, (4)

which has a plethora of periodic orbits. Clearly (x(t), y(t)) = (cos(t),− sin(t))
represents a periodic solution, but so too does the 4π periodic extension of

(x(t), y(t)) =





(cos(t),− sin(t)) : 0 ≤ t ≤ 2π,

(1, 0) : 2π ≤ t ≤ 4π,

to R which can be constructed due to the presence of the equilibrium point
(1, 0) that lies on a periodic orbit. It is easy to construct infinitely many
Canard-like periodic solutions for (3-4) whereby y ∈ L∞(R) and y is piecewise
smooth but not continuous. However, the types of solutions identified in such
simple systems, while interesting, are not tractable using the techniques of this
paper as they result from global connections between different quasi-invariant
sets.
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In the remainder of the paper we shall also state results in terms of the so-
called semi-explicit DAE form

ẋ = f(x, y, µ), (5)

0 = g(x, y, µ), (6)

such that x ∈ Rn, y ∈ Rm, f(0, 0, µ) = 0, g(0, 0, µ) = 0 for all µ ∈ R where
n ≥ 2 and m ≥ 1. In terms of (5-6) we shall define objects associated with
the singularity using bold font in order to distinguish them from the related
concepts of the quasilinear form (1). So, the constraint manifold is

Cµ := {(x, y) ∈ Rn+m : g(x, y, µ) = 0},
the singularity is

Sµ := {(x, y) ∈ Cµ : det(dyg(x, y, µ)) = 0},
and the set of pseudo-equilibria is

Pµ := {(x, y) ∈ Sµ : dxg[f ] ∈ im(dyg)},
where functions and their derivatives are evaluated at (x, y, µ) in the latter
definition. A singular equilibrium is an equilibrium point of (5-6) in Sµ.

1.1 Notation

Here and throughout for real τ and integer k, Oτ
k(x) is the set of smooth maps

f(x, τ) such that ‖f(x, τ)‖ ≤ κ(τ)‖x‖k for a continuous family of constants κ
and f ∈ Ok(x) means that ‖f(x)‖ ≤ κ‖x‖k for all x in some neighbourhood
of zero. Also, Ok(x, y) is a synonym for Ok((x, y)) and so, for example, τx ∈
Oτ

1(x)∩O2(τ, x). By Tp(M) we mean the tangent space of the manifold M at
a point p ∈M and both symbols d and ∇ represent the derivative of a smooth
map, similarly dx and ∂

∂x
both represent a partial derivative with respect to x.

The spectrum of a matrix pencil (A, B) is the set

σ(A, B) = {α ∈ C : det(αA− B) = 0}.
Suppose that det A = 0 in the matrix pencil (A, B) acting on Rr and suppose
this pencil is regular, meaning that det(αA − B) 6= 0 for some α ∈ C, then
(A, B) can be transformed into Kronecker Normal Form (KNF) through a
change of coordinates:

PAQ =




Ip 0

0 N


 , PBQ =




C 0

0 Iq


 . (7)
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Here N 6= 0 and Nν = 0 for some ν ≥ 1, p, q ≥ 1 are integers such that p+q = r
and P, Q are real r × r matrices.

If iω ∈ σ(A, B) for a real ω > 0, z ∈ Cr satisfies iωAz = Bz and we set
z = Qw, then iωPAQw = PBQw and so the real and imaginary part of the
first p-components of w (with associated projection Π, so that Π(wp, wq) = wp

for (wp, wq) ∈ Cp+q) forms a 2-dimensional real space

span{<(Π[w]),=(Π[w])}
which is invariant for C. Similarly, we shall call the 2-dimensional space given
by span{<(z),=(z)} the real eigenspace of (A, B) associated with iω.

Throughout the paper we shall use M for the operator matrix

M ≡



I 0

0 0


 , (8)

acting on a space of the form Rn+m for integers n and m.

2 Preliminary: the simplest possible index-2 linear structure

Our aim is to employ the Hopf bifurcation theorem to create smooth, singular
periodic solutions of DAEs by suitably restricting the nature of the singularity
of the linearisation at an equilibrium point and by subsequently controling the
unfolding of that singularity as a parameter is varied. Therefore a restricted
definition, the so-called simple index-2 singularity will be invoked to ensure
that singularities of (1) and (5-6) are manifested in their linearisations in as
mild a fashion as possible.

Definition 2 A regular matrix pencil (A, B) on Rr is said to be simple index-
2 if in its Kronecker normal form (7), the matrix N ∈ L(Rq) is nilpotent with
rank(N) = 1.

It is straightforward to prove a Hopf bifurcation theorem for (1) under the
assumption that A(0, µ) is an invertible mapping: one simply rewrites the
problem as an ODE near x = 0 and utilises the well-known Hopf bifurcation
theorem for smooth ODEs. In order to relax such an invertibility restriction
in order to allow singularities, we study certain classes of DAE whose lineari-
sation is simple index-1 at the bifurcation point.

From [4] we have the following lemma that gives a concrete case in which
simple index-2 matrix pencils can be identified.
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Lemma 3 Suppose that A : Rn → Rn, B : Rm → Rn, C : Rn → Rm, D :
Rm → Rm are linear maps satisfying ker(D) = span{k} 6= {0}, CBk 6∈ im(D)
and

det




A B

C D


 6= 0,

then the matrix pencil 





I 0

0 0


 ,




A B

C D







is simple index-2.

Lemma 3 provides a link to the Singularity-Induced Bifurcation (SIB) theo-
rem of Venkatasubramanian et al. [12,13] where the authors study solution
trajectories of DAEs when equilibria collide with singularities under a one-
parameter variation. Lemma 3 above follows from the proof of [4, Theorem
7] and the assumptions of that theorem are equivalent to the original SIB
theorem of [12].

2.1 A Centre-Manifold Reduction

In order to address bifurcation issues regarding (1) we seek an appropriate
centre-manifold for this type of DAE, leading us to initially consider problems
without parameters. So, consider the quasi-linear differential equation

A(x)ẋ = F (x), (x ∈ Rn), (9)

which we may write in semi-explicit form as

ẋ = y, A(x)y = F (x), (10)

where (x(0), ẋ(0)) = (x(0), y(0)) ∈ R2n is given. The basis for this paper
begins with the following theorem which shows not only that the singularity
of a DAE can support smooth solutions, those solutions can be extended to
form a smooth quasi-invariant manifold.

Theorem 4 Suppose that f : Rn+m → Rn and g : Rn+m → Rm are C∞ maps
such that f(0, 0) = 0, g(0, 0) = 0 and


M,




dxf(0, 0) dyf(0, 0)

dxg(0, 0) dyg(0, 0)






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is a simple index-2 matrix pencil over Rn+m. Then, for each r ≥ 1 there is a
codimension-1, quasi-invariant Cr graph M(r) ⊂ g−1{0} of

ẋ = f(x, y), 0 = g(x, y), (11)

such that (0, 0) ∈ M(r). Moreover, for each open ball M′ ⊂ M(r) containing
(0, 0) there is a T ⊂ R and a local dynamical system φ : T ×M′ → M(r)

such that (x(t), y(t)) = φ(t; (x0, y0)) satisfies (11) for all t ∈ T .

PROOF. Expand (11) using Taylor’s theorem as

ẋ = Ax + By +O2(x, y), (12)

0 = Cx + Dy +O2(x, y), (13)

and form the matrix pencil (M, L), where A = dxf(0, 0) and the remaining
entries of L are analogously defined:

L ≡



A B

C D


 .

The pencil (M,L) is regular and simple index-2 by assumption.

We can set (11) in terms of a nonlinear perturbation of the Kronecker normal
form of (M, L) by putting Z ≡ Q(u, v) = (x, y) for (u, v) ∈ Rp+q so that
x = αu + βv. This is a problem of the form Mż = Lż + O2(z), whence
PMQ(u̇, v̇) = PLQ(u, v) +O2(u, v) and we may finally write this in the form

u̇ = Cu + F(u, v), (14)

Nv̇ = v + G(u, v), (15)

where im(N) = span{n0} for some vector n0 ∈ Rq of unit norm. Here F and
G are both maps of the form O2(u, v).

Next we shall write v(t) = λ(t)n0+w(t) where λ(t) ∈ R and w(t) ∈ span{n0}⊥,
for all values of t for which these functions are defined. Hence, from (15) we
find that

N[ ˙λ(t)n0 + ẇ(t)] = λ(t)n0 + w(t) + G(u, λ(t)n0 + w(t)),

from where

N[ẇ(t)] = λ(t)n0 + w(t) + G(u, λ(t)n0 + w(t)), (16)
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as N[n0] = 0. Because N[ẇ] ∈ span{n0}, by projecting (16) onto span{n0} and
its orthogonal complement we are led to the following coupled differential and
algebraic equation:

nT
0 N[ẇ] = λ + nT

0 G(u, λn0 + w), (17)

0 = w + Π0G(u, λn0 + w), (18)

where Π0 : Rq → span{n0}⊥ is an orthogonal projection.

We can use the implicit function theorem to remove the algebraic equation
(18) and locally solve for w = W (u, λ), where W (0, 0) = 0 and dW (0, 0) = 0.
However, equations (17) and (18) remain coupled and we now find that the
differential relation

d

dt
ω(u, λ) = λ + γ(u, λ) (19)

holds, where ω(u, λ) := nT
0 N[W (u, λ)] and γ(u, λ) = nT

0 G(u, λn0 + W (u, λ)).

If we assume that one can differentiate (19) for the moment, we obtain

duω(u, λ)[u̇] + dλω(u, λ)[λ̇] = λ + γ(u, λ).

From here

duω(u, λ)[Cu + F(u, λ)] + dλω(u, λ)[λ̇] = λ + γ(u, λ), (20)

and so we can write (14-15) in the form

u̇ = Cu +O2(u, λ), (21)

σ(u, λ)λ̇ = λ +O2(u, λ), (22)

where σ(u, λ) ≡ dλω(u, λ) carries the location of the singularity. Note that
σ(0, 0) = 0 follows from dω

dλ
(u, λ) = nT

0 NdλW (u, λ) and the fact that dW (0, 0) =
0.

By rescaling the time variable we can put (21-22) in the form of an ordinary
differential which is smooth and orbit equivalent to the quasi-linear equation
(21-22):

u′ = σ(u, λ)(Cu +O2(u, λ)) =O2(u, λ), (23)

λ′ = λ +O2(u, λ), (24)
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where a prime (′) denotes differentiation with respect to s and dt
ds

= σ(u, λ).

We can now apply the centre manifold theorem to (23-24) as its linearisation
at (u, λ) = (0, 0) is the map (u, λ) 7→ (0, λ) which has a single, algebraically
simple non-zero eigenvalue associated with eigenvector (0, 1). This application

yields the existence of an invariant Cr graph, M(r)
0 ⊂ Rp+1, of (23-24) as

the graph of a function λ = λ(u) such that λ(0) = 0 and dλ(0) = 0. This

graph is quasi-invariant for (21-22) which possesses a local flow on M(r)
0 that

derives from the local flow of the differential equation u̇ = Cu + F(u, λ(u)).
This flow is mapped under the geometric transformation constructed in this
proof into a quasi-invariant manifold of (10); explicitly this transformation is
(x, y) = Q[u, λn0 + W (u, λ(u))] =: H[u, λ]. Hence we finally define M(r) =

H(M(r)
0 ) = H{(u, λ(u)) : ‖u‖ small}.

Corollary 5 Suppose that A : Rn → L(Rn) and F : Rn → Rn are smooth
maps such that F (0) = 0, det(A(0)) = 0 and


M,




0 I

−dF (0) A(0)





 (25)

is a simple index-2 matrix pencil over R2n. Then, for each r ≥ 1 there is a
codimension-1, quasi-invariant Cr graph M(r) ⊂ R2n of (10) such that (0, 0) ∈
M(r). Moreover, for each open ball M′ ⊂M(r) containing (0, 0) there is a T ⊂
R and a local dynamical system φ : T ×M′ →M(r) such that (x(t), y(t)) =
φ(t; (x0, y0)) satisfies (10) for all t ∈ T .

PROOF. Apply Theorem 4 with f(x, y) = y and g(x, y) = A(x)y − F (x) as
then (25) is the linearisation of the resulting DAE ẋ = y, 0 = A(x)y − F (x)
at (x, y) = (0, 0).

Applying Lemma 3, we note that the matrix pencil in (25) is simple index-2
if

det(dxF (0)) 6= 0, ker(A(0)) = span{k} and dxF (0)[k] 6∈ im(A(0));

these conditions will be utilised later in Theorem 8.

The main tenet of Theorem 4, namely the existence of a quasi-invariant man-
ifold of a nonlinear DAE when its linearisation is simple index-2, relies essen-
tially on the following observation that is buried within the proof of Theorem
4.
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Lemma 6 If C ∈ L(Rp) is any matrix and N ∈ L(Rq) is nilpotent with rank
1, then the semilinear DAE, with (a, b) ∈ Rp+q,

ȧ = Ca + F(a, b), (26)

Nḃ = b + G(a, b), (where F ,G ∈ O2(a, b)) (27)

has a local, quasi-invariant manifoldM⊂ Rp+q that contains the point (a, b) =
(0, 0). Solution trajectories on M satisfy b(t) = h(a(t)) where h is a differen-
tiable function defined in a neighbourhood of a = 0 with h(0) = 0, dh(0) = 0.

PROOF. The details of this result are a repetition of the proof of Theorem
4 that follows the presentation of (14)-15). The basis of the proof of both
lemmas is that a smooth partial differential equation of the form

h(a) = Ndh(a)[Ca + F(a, h)] + G(a, h), h(0) = 0, dh(0) = 0, (28)

has a solution given by a certain centre manifold if N is nilpotent with rank 1.

It may be instructive to compare Lemma 6 with [4, Theorem 2.5], [5, conditions
(A1-A5)] and [12]. It is shown in these references that that singular equilibria
of DAEs possess certain invariant manifolds under restrictions on both the
matrix pencil obtained from linearising the DAE and on the geometric nature
of the constraint in (11). Lemma 6 is a slightly stronger result because it states
that one of the invariant manifolds described in these references can be found
if the DAE only satisfies a condition on its linearisation that does not require
any information of the geometric properties of the constraint manifold.

Lemma 6 may also be considered a continuous-time analogy of a result in [3]
which studies the functional equation

h(a) = Nh(Ca + F(a, h)) + G(a, h), h(0) = 0. (29)

Equation (29) arises in the context of discrete-time implicit systems, whether
obtained from a numerical discretisation of (1) or from the first-order opti-
mality equations of infinite-horizon optimal control (see [9] for example). It
is noteworthy that discrete-time problems are simpler than their continuous
time counterparts in the sense that one can establish the existence of a fixed
point h of (29) independently of the index of the matrix N using a contraction
argument. It is an open problem to establish the existence of solutions of (28)
when N has rank greater than 1, this is an important question as its resolution
would quickly lead to new bifurcation theorems for singular DAEs.
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3 A Singular Hopf Bifurcation Theorem

With Lemma 6 in place we are in a position to prove the following main result
regarding systems of the form (5-6).

Theorem 7 Suppose that the one-parameter family of DAEs (5-6) satisfies
f(0, 0, µ) = 0, g(0, 0, µ) = 0 for all µ and write L(µ) for the matrix of partial
derivatives dx,y(f, g)(0, 0, µ). If

(1) ker(dyg(0, 0, 0)) = span{k},
(2) dxg(0, 0, 0)dyf(0, 0, 0)k 6∈ im(dyg(0, 0, 0)),

and (M,L(µ)) has a transverse Hopf point in the sense that

(3) ±ω0i ∈ σ(M,L(0)), ±`ω0i 6∈ σ(M, L(0)) for each ` ∈ {0, 2, 3, ...} and
(4) λ(µ) ∈ σ(M, L(µ)) satisfies

Im(λ(0)) = ω0 > 0, Re(λ(0)) = 0 and
d

dµ
Re(λ(µ))

∣∣∣∣∣
µ=0

6= 0,

then

(i) there is a half-open interval J containing µ = 0 in its closure such that for
all µ ∈ J , (5-6) possesses a periodic orbit.

(ii) It follows from assumptions (1) and (2) of the theorem that Sµ is a
codimension-1 submanifold of the n-dimensional manifold Cµ for sufficiently
small |µ|. As a result, if 0 ∈ Sµ for small |µ| and the two-dimensional real
eigenspace E := span{eR, eI} associated with purely imaginary eigenvalues
±ω0i ∈ σ(M, L(0)) intersects the singularity Sµ transversally at µ = 0, then
the periodic orbit from (i) is singular.

PROOF. It follows from the assumptions and Lemma 3 that (M, L(0)) is
simple index-2. Now re-write (5-6) in the form

µ̇ = 0, (30)

ẋ = A(µ)x + B(µ)y +Oµ
2 (x, y), (31)

0 = C(µ)x + D(µ)y +Oµ
2 (x, y), (32)

that can be re-cast as µ̇ = 0, Mż = L(µ)z +Oµ
2 (z), or

µ̇ = 0, Mż = L(0)z + µL′(0)z +O2(z, µ), (33)
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where a prime (′) denotes d/dµ. Putting the linear terms of equation (33) into
KNF upon setting Qw = z yields

PMQẇ = PL(0)Qw + µPL′(0)Qw +O2(Qw, µ)

and this can be written in the form

µ̇ = 0, (34)

ȧ = Ca +O2(µ, a, b), (35)

Nḃ = b +O2(µ, a, b). (36)

From Lemma 6, (34-36) possesses a differentiable, quasi-invariant manifold on
which b = h(a, µ) and h(0, 0) = 0, dh(0, 0) = (0, 0).

Now consider the resulting differential equation

PMQẇ = PL(µ)Qw +Oµ
2 (Qw), (37)

noting that M is independent of µ. Equation (37) can be rewritten as

µ̇ = 0, (38)

ȧ = C(µ)a + E1(µ)b +Oµ
2 (a, b), (39)

Nḃ = E2(µ)a + I(µ)b +Oµ
2 (a, b), (40)

where Ei(0) = 0 for i = 1, 2 and C(0) = C, I(0) = I. From the fact that
b = h(a, µ) holds on a quasi-invariant manifold, it follows that the following
PDE is satisified by h

Ndah(a, µ)[C(µ)a + E1(µ)h +Oµ
2 (a, h)] = E2(µ)a + I(µ)h +Oµ

2 (a, h)

and on setting a = 0 we obtain an equation for H := h(0, µ):

Ndah(0, µ)[E1(µ)H +Oµ
2 (H)] = I(µ)H +Oµ

2 (H). (41)

Equation (41) has solution H = 0 for all small |µ| and because I(0) is the
identity, it follows from the implicit function theorem that H is identically
zero in µ, meaning that h(0, µ) = 0 for all |µ| small.

Through this series of transformations, if we can show that (38-40) restricted
to the graph of h has periodic solutions, then so too will the DAE (5-6) and
this restriction is given by an ODE of the form
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µ̇ = 0, (42)

ȧ = C(µ)a + E1(µ)h(a, µ) +Oµ
2 (a, h(a, µ)). (43)

Now, ∆(µ) := dah(0, µ) is a linear map that satisfies the quadratic equation

N∆[C(µ) + E1(µ)∆] = E2(µ) + I(µ)∆ (44)

for small |µ|. When µ = 0 the matrix equation (44) is the linear problem

N∆C = ∆ (45)

and since N is nilpotent, (45) has the unique solution ∆ = 0. The implicit
function theorem then shows that (44) can be solved locally to µ = 0 for
∆ = ∆(µ) such that ∆(0) = 0.

The linearisation of (43) at a = 0 is C(µ) + E1(µ)∆(µ) and one can show that
the spectrum of this linear map coincides with the non-diverging spectrum
of (M, L(µ)) for small |µ|. To see this, suppose λ ∈ σ(M,L(µ)), then λ ∈
σ(PMQ, PL(µ)Q) and

λ




I 0

0 N







w

∆(µ)w


 =




C(µ) E1(µ)

E2(µ) I(µ)







w

∆(µ)w




⇐⇒ λw = (C(µ) + E1(µ)∆(µ))w

by the construction of ∆(µ). The fact that (M,L(µ)) has a transverse Hopf
point at µ = 0 ensures that C(µ) + E1(µ)∆(µ) satisfies the conditions of
the Hopf bifurcation theorem yielding the existence of a branch of periodic
solutions of (43) emanating from µ = 0 and part (i) follows.

Part (ii) is true for the following reasons. Given that iω0 ∈ σ(M, L(0)) there
is complex vector z such that iω0Mz = L(0)z. The real vectors eR = Re(z)
and eI = Im(z) then yield a two-dimensional eigenspace of (M, L(0)) and
we define E := span{eR, eI}. In order to establish that the branch of period
solutions from part (i) are singular it suffices that the two-dimensional centre
space associated with the Hopf bifurcation point µ = 0, namely E, intersects
the singularity transversally at that point. However, this property is one of the
assumptions of part (ii). (Note that one has to ensure that dim(T0(S0)⊕E) =
n, but since S0 is a codimension-1 submanifold of C0 from the assumptions of
the theorem, in practice we actually only have to verify that either eR 6∈ T0(S0)
or eI 6∈ T0(S0).)
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A Hopf bifurcation theorem for quasi-linear problems of the form (1) now
follows.

Corollary 8 Suppose that F (0, µ) = 0 for all µ ∈ R. If

(1) ker(A(0, 0)) = span{k},
(2) dxF (0, 0)[k] 6∈ im(A(0, µ0)),
(3) ±iω0 ∈ σ(A(0, 0), dxF (0, 0)) and ±i`ω0 6∈ σ(A(0, 0), dxF (0, 0)) for all

n ∈ {0, 2, 3, ...},
(4) λ(µ) ∈ σ(A(0, µ), dxF (0, µ)) satisfies

Im(λ(0)) = ω0 > 0, Re(λ(0)) = 0 and
d

dµ
Re(λ(µ))

∣∣∣∣∣
µ=0

6= 0,

then

(i) there is a half-open interval J containing µ = 0 in its closure such that for
all µ ∈ J the DAE (1) possesses a periodic orbit.

(ii) If, in addition, Sµ is a codimension-1 submanifold of Rn, 0 ∈ Sµ for all µ
and the real eigenspace associated with the purely imaginary eigenvalues inter-
sects Sµ transversally at µ = 0, then periodic orbits formed in this bifurcation
are singular.

PROOF. This is immediate from Lemma 3 and Theorem 7 and follows from
setting f(x, y, µ) := y and g(x, y, µ) := A(x, µ)y − F (x, µ). As a result, the
matrix pencil (M, L(µ)) from the statement of Theorem 7 is given by

(M, L(µ)) =







I 0

0 0


 ,




0 I

−dxF (0, µ) A(0, µ).





 (46)

It is clear from the entries of (M,L(µ)) in (46) that conditions (1) and (2) of
Theorem 7 are satisfied.

Now, note that λ ∈ σ(M, L(µ)) if and only if λMz = L(µ)z for some non-zero
vector z = (x, y)T , which is the eigenvalue equation

λx− y = 0, dxF (0, µ)x− A(0, µ)y = 0. (47)

It is clear that (47) holds if and only if dxF (0, µ)x−A(0, µ)λx = 0 for a non-
zero x and finally therefore λ ∈ σ(A(0, µ), dxF (0, µ)). Thus conditions (3) and
(4) of Theorem 7 are satisfied.
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If assumptions (3-4) of Theorem 8 are satisfied then we say that (1) possesses
a transverse Hopf point at µ = 0.

4 Examples

Let us probe the results of this paper with a series of related examples. First
consider the fully nonlinear differential equation in x = (x1, x2, x3) ∈ R3:

ẋ1 = µx1 − x2 + µη(x), (48)

ẋ2 = x1 + µx2 + µζ(x), (49)

d

dt
ψµ(x) = σx3 + x2

τ , (50)

where ψµ is a smooth one-parameter family of functions with ∇ψ0(0, 0, 0) =
(0, 0, 0) and σ is a parameter that is fixed at either 0 or 1, τ ∈ {1, 2, 3} and
we also assume that η, ζ ∈ O2(x). Let us assume for simplicity that

ζ(0, 0, x3) = 0 ⇔ x3 = 0

and η(0, 0, x3) ≡ 0 so that for a sufficiently small δ > 0,

lim
x2→0

η(0, x2, x3)

x2

=
∂η

∂x2

(0, 0, x3) =: β(x3)

is a continuous function satisfying µβ(x3) 6= 1 for all x ∈ Bδ(0) ⊂ R3 and
|µ| < δ.

This set of assumptions ensure that (48-50) has a transverse Hopf point at
µ = 0, but is this sufficient to ensure that a branch of period solutions emanates
from µ = 0?

The singularity for (48-50) is the set

Sµ =

{
x ∈ R3 :

∂ψµ

∂x3

(x) = 0

}

and the Hopf point that occurs at µ = 0 is associated with the two-dimensional
real eigenspace

E := span{(1, 0, 0), (0, 1, 0)}

15



arising from the two purely imaginary finite eigenvalues±i of the matrix pencil







1 0 0

0 1 0

0 0 0




,




0 −1 0

+1 0 0

0 0 σ







. (51)

We now consider three examples that derive from (48-50).

Example 9 This example is constructed so that Theorems 7 and 8 are inap-
plicable to (48-50) and no periodic solutions exist: set σ = 0 in (50) and note
that the matrix pencil (51) is singular.

If σ = 0 and τ = 1 there is a neighbourhood of zero that is independent of
µ such that the differential system (48-50) has no periodic orbits on which
x1 6≡ 0. This can be seen by integrating (50) over a period, from t = 0 to
t = T say, yields

∫ T
0 x2

1(t)dt = 0. However, on the corresponding space Iε :=
{x ∈ Bε(0) : x1 = 0}, any solution of (48-50) would have to satisfy

0 = ẋ1 = −x2 + µη(0, x2, x3), ẋ2 = µx2 + µζ(0, x2, x3).

But then ẋ1 = x2(−1+µη(0, x2, x3)/x2) and one can therefore choose ε so that
ẋ1 6= 0 in Iε unless x2 ≡ 0 along that solution, but then ζ(0, 0, x3(t)) = 0 on
some time interval and so x3(t) = 0 too by the assumption on ζ.

As a result, Iε\{0} cannot be quasi-invariant in the sense that every non-
trivial solution starting in Iε near zero must leave Iε immediately. This set
cannot therefore contain a periodic orbit near zero and so µ = 0 cannot be
a Hopf bifurcation point as ε can be chosen independently of µ. In this case
Theorem 8 cannot be applicable, indeed it is not because conditions (2) and
(3) fail with ` = 0 for any nonlinear map ψµ with the stated restrictions.

Example 10 This example shows that even if Theorems 7 and 8 are inap-
plicable to (48-50), a Hopf bifurcation to singular periodic solutions may still
occur.

To achieve this, set σ = 0 and τ = 3 in (50) and note again that conditions
(2) and (3) of Theorem 8 fail. Let

ψµ(x) =
1

2
(x2

1 + (x2 + x3 − µ)2)

so that Sµ = {x ∈ R3 : x2+x3 = µ} and the tangent space of S0 at x = 0 ∈ R3
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is

T0(S0) = span{(1, 0, 0)T , (0, 1,−1)T}
which is transverse to the eigenspace E at their point of intersection.

For the resulting system

ẋ1 = µx1 − x2 + µη(x), (52)

ẋ2 = x1 + µx2 + µζ(x), (53)

d

dt
ψµ(x) = x2

3, (54)

on setting µ = 0, (52-54) simplifies somewhat to

ẋ1 = − x2, ẋ2 = x1, (55)

(x2 + x3) ẋ3 = x3 (x3 − x1). (56)

We therefore observe that (52-54) possesses a so-called vertical Hopf bifurca-
tion at µ = 0 with periodic solutions on the quasi-invariant set {x ∈ R3 : x3 =
0} of the form

xs1,s2(t) = (s1 cos(t) + s2 sin(t), s1 sin(t)− s2 cos(t), 0)

for any non-zero, real s1 and s2. This family of periodic solutions contains
trajectories that are singular as the condition xs1,s2(t) ∈ S0 is met when
s1 sin(t) − s2 cos(t) = 0, a solution of which arises twice per period where-
upon the rank of the matrix

A(xs1,s2(t), 0) = diag{1, 1, x2(t) + x3(t)} = diag{1, 1, s1 sin(t)− s2 cos(t)}

changes from 3 to 2 and back.

Fig. 2. A vertical Hopf bifurcation to singular solutions: a schematic of the phase
portrait of Example 2 when µ = 0 showing the two lines of pseudo-equilibria that
intersect at a singular equilibrium and a two-dimensional family of periodic orbits.

S0

P1

-

P2P1

+

impasse
points

Many of the aspects of the phase portrait of (52-54) pertinent to this example
can be determined from the ODE that results from (55-56) on rescaling time
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according to ds/dt = x2 + x3, where a prime (′) now denotes d/ds:

x′1 = − (x2 + x3)x2, x′2 = (x2 + x3)x1, x′3 = x3 (x3 − x1). (57)

Firstly, note that there are two lines of pseudo-equilibria of (52-54) given by

P1 = {x ∈ R3 : x2 + x3 = 0, x3 = 0} and P2 = {x ∈ R3 : x2 + x3 = 0, x3 = x1},

and P1∩P2 = {0} is a singular equilibrium point. (Pseudo-equilibria are equi-
libria of (57) that are not equilibria of (55-56)). The two-dimensional family
of periodic orbits {xs1,s2}s1>0,s2>0 intersects the singularity S0 at an element
of P1 and the periodic orbits are formed from the union of two heteroclinic
trajectories between pseudo-equilibria in

P+
1 = {x ∈ P1 : x1 > 0} and P−1 = {x ∈ P1 : x1 < 0}.

See Figure 2 for a schematic of this structure.

Example 11 We can utilise the results of this paper to demonstrate that the
periodic singular solutions of Example 2 persist to nearby singular systems by
applying Theorem 8(i & ii).

If we now have in mind σ 6= 0 in (50) but, as per Example 2 put ψµ(x) =
1
2
(x2

1 + (x2 + x3 − µ)2), then Theorem 8 applies in its entirety to the system

ẋ1 = µx1 − x2 + µη(x), (58)

ẋ2 = x1 + µx2 + µζ(x), (59)

d

dt
ψµ(x) = σx3 + x2

τ , (for τ = 1, 2 or 3) (60)

as Sµ = {x ∈ R3 : x2 + x3 = µ} is a codimension-1 subspace of R3 and
T0(S0) = span{(1, 0, 0)T , (0, 1,−1)T}. Since dim(T0(S0) ⊕ E) = 3, the set S0

transversally intersects the two-dimensional centre manifold that carries the
bifurcating periodic orbit that is associated with the eigenspace E and, as a
result, the periodic orbits obtained in this Hopf bifurcation are singular.
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Fig. 3. Sketch of the creation of singular periodic orbits: provided the eigenspace
intersects the singularity transversally at the bifurcation point, a path of singular
periodic orbits is created because the eigenspace yields an invariant manifold that
carries the periodic orbit which is then forced to intersect the singularity.
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