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Abstract

This supersedes a previous version of the SIB theorem [1] (which
contains an error) and gives a proof of SIB in the context of a 1-
parameter family of operator matrix-pencils (M, L) on a pair of Hilbert
spaces. The method of proof generalises to show that for suitable Fred-
holm pencils, there is a finite-dimensional space and a matrix pencil
(E, F) on that space whose finite eigenvalues determine the number of
diverging eigenvalues of (M, L).

1 The SIB Theorem

Theorem 1 (SIB) Suppose that X andY are Hilbert spaces and let A(\) :
X — X,B\):Y — X and C(\) : X — Y be a Cl-parameterised family
bounded, linear operators and suppose that D()\) : Y — Y is a C? family of
bounded, linear operators. Suppose also that

1. D(Xo) is Fredholm of index zero with ker(D(\g)) = (k),
2. D'(M\o)k & ran(D(\g)) and
3. C(/\o)B()\())k ¢ ran(D(/\o)).

Now define the operator pencil

o I 0 A(N) B(A)
aezon=((a 0)-(&0) o0 )
There is a non-zero u € R, a neighbourhood N C R containing Ao and C*

mappings (x,y,a) : N\{ o} — X xY X R such that

li — =
ALHQO(A Ao)a(Ao) = K,

and a(N) € o(M, L())) is an eigenvalue for all A € N\{\o}.



Proof. By assumption we can find a closed subspace K C X such that
Y =(k)® K and Y = (u) ®ran(D(\g)), where ker(D(X\9)*) = (u). Now let

y=0k/(A—Xo)+vekaeK,
and set 3 = (A — A\g)a. The eigenvalue problem

aMz=L(\)z, |[Mz||*>=1, ze€ X XY,

becomes
Br = (A=X)AN)x + B(X)(0k + (A — Xo)v), (1)
0 = P[CN)z+0ANk+ D(N)v], (2)
= Q[C(N)x+ 0A(N)k + D(N)v], (3)
[l (4)

where A is the C! family of operators given by
D(A) — D(Xo)
A—Xo
In addition, @ + P is the identity on ¥ and @ : Y — ran(D(\g)) is the
projection operator along (u).
Solving (1-4) when A = )¢ leads to
P[C(Xo)B(o)k]
[PD'(Ao)k]

A(X) = A(Xo) = D'(No).

2o = B(Xo)k/|[B(ho)kl|, Bo = —

;00 = 50/”3()\0)k||7
and then we obtain vy € ran(D()g)) by solving

QID(M\o)vo] = —Q[ByC (M) B(Ao)k + 6o D' (No)k].

It is now straightforward to show that if (1-4) is denoted by a C'! mapping
of Hilbert spaces I : X xran(D(\g)) xR? — X xran(D(X\g)) x (u) x R, with
F = F(z,v,0,3,\), then dy 4 9 gF (0, vo, 0o, Bo, \o) € BL(X xran(D(Xg)) x
R3, X x ran(D(\g)) x (u) x R) is an isomorphism. The result now follows
from the implicit function theorem. O

In [1] it was shown that

where P is a projection taken from the above proof. We show below that
this value of u arises as an eigenvalue of a particular matrix pencil.



One can extend Theorem 1 to the case where the dimension of the null-
space of D()g) is not simple. In this case, one can reduce the problem
to a matrix pencil over a finite-dimensional space, (E, F') say, the finite
eigenvalues of which determine how many of the eigenvalues of (M, L(\))
diverge at Ag.

In the following, a hat on a Hilbert space represents an admissible com-
plexification. A ug € C is said to be an algebraically simple, finite eigenvalue
of a matrix pencil (E, F') if the real-valued function

w— det(E + pF),
has a transverse zero at p = pg. This is equivalent to
det(E + poF) =0, ker(E+ poF) = (k), Fk ¢ ran(uE + F).

Theorem 2 Suppose that A(\) : X — X, B(A\):Y — X and C(\) : X —
Y is a C'-parameterised family bounded, linear operators and suppose that

D(A\) : Y — Y is a C? family of bounded, linear operators. Suppose also
that D(\g) is Fredholm of index zero with ker(D(\o)) = (k1, k2) and let

Y = sp{ui,uz} @ ran(D(Ao)).

Let P:Y — sp{ui,ua} be the projection operator along ran(D(\g)) and let
P15:Y — R be defined so that Ply] = u1 P1[y] + uePa2ly]. Now take the real
matrices E, F given by

(Eij) := B[C(Mo)B(o)kjl, (Fij) := Pi[D'(Ao)kjl, (i, = 1,2).

Suppose that i1 2 € C satisfy det(E + pF') = 0 and are algebraically simple.
Then there is a neighbourhood N C R containing Ao and two C' map-
pings (z1,2,y12,a12) : N\{ Ao} — X x Y x C such that

lim ()\ — )\0)0&172()\0) = K1,2,
A— Ao

and a1 2(X) € o(M, L(X)) is an eigenvalue for all A € N\{\o}.
This theorem is an example of the following more general result.

Theorem 3 Suppose that A(\) : X — X, B(A\):Y — X and C(\) : X —
Y be a C'-parameterised family bounded, linear operators and suppose that
D(A\) : Y — Y is a C? family of bounded, linear operators. Suppose also



that D(Xg) is Fredholm of index zero with K := ker(D(\g)) and dim K > 1
and let W be a finite-dimensional space with

Y =W @ran(D()\y)).

If P:Y — W are the projection operators along ran(D(\g)), let us define
finite-dimensional, linear mappings E, F € BL(W) by

E = P[C(M0)B(Xo)|lw, F :=P[D'(\)]lw,

now let p € C satisfy det(E+pF') = 0 and be algebraically simple. There is a
neighbourhood N C R containing \g and a C* mapping (x,y,a) : N\{\o} —
X xY x C such that

lim (A — Ao)a(Ao) = p,

A— Ao

and a(N) € o(M, L())) is an eigenvalue for all A € N\{\o}.

Proof. The proof of this result is almost identical to that of Theorem 1.
The algebraic simplicity of p is used to demonstrate that the linearisation
operator of the problem which corresponds to (1-4) is an isomorphism. O
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