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Abstract

This supersedes a previous version of the SIB theorem [1] (which
contains an error) and gives a proof of SIB in the context of a 1-
parameter family of operator matrix-pencils (M,L) on a pair of Hilbert
spaces. The method of proof generalises to show that for suitable Fred-
holm pencils, there is a finite-dimensional space and a matrix pencil
(E, F ) on that space whose finite eigenvalues determine the number of
diverging eigenvalues of (M,L).

1 The SIB Theorem

Theorem 1 (SIB) Suppose that X and Y are Hilbert spaces and let A(λ) :
X → X, B(λ) : Y → X and C(λ) : X → Y be a C1-parameterised family
bounded, linear operators and suppose that D(λ) : Y → Y is a C2 family of
bounded, linear operators. Suppose also that

1. D(λ0) is Fredholm of index zero with ker(D(λ0)) = 〈k〉,
2. D′(λ0)k 6∈ ran(D(λ0)) and

3. C(λ0)B(λ0)k 6∈ ran(D(λ0)).

Now define the operator pencil

(M,L(λ)) :=
((

I 0
0 0

)
,

(
A(λ) B(λ)
C(λ) D(λ)

))
.

There is a non-zero µ ∈ R, a neighbourhood N ⊂ R containing λ0 and C1

mappings (x, y, α) : N\{λ0} → X × Y × R such that

lim
λ→λ0

(λ− λ0)α(λ0) = µ,

and α(λ) ∈ σ(M, L(λ)) is an eigenvalue for all λ ∈ N\{λ0}.
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Proof. By assumption we can find a closed subspace K ⊂ X such that
Y = 〈k〉 ⊕K and Y = 〈u〉 ⊕ ran(D(λ0)), where ker(D(λ0)∗) = 〈u〉. Now let

y = θk/(λ− λ0) + v ∈ 〈k〉 ⊕K,

and set β = (λ− λ0)α. The eigenvalue problem

αMz = L(λ)z, ‖Mz‖2 = 1, z ∈ X × Y,

becomes

βx = (λ− λ0)A(λ)x + B(λ)(θk + (λ− λ0)v), (1)
0 = P [C(λ)x + θ∆(λ)k + D(λ)v], (2)
0 = Q[C(λ)x + θ∆(λ)k + D(λ)v], (3)
1 = ‖x‖2, (4)

where ∆ is the C1 family of operators given by

∆(λ) =
D(λ)−D(λ0)

λ− λ0
, ∆(λ0) = D′(λ0).

In addition, Q + P is the identity on Y and Q : Y → ran(D(λ0)) is the
projection operator along 〈u〉.

Solving (1-4) when λ = λ0 leads to

x0 = B(λ0)k/‖B(λ0)k‖, β0 = −P [C(λ0)B(λ0)k]
[PD′(λ0)k]

, θ0 = β0/‖B(λ0)k‖,

and then we obtain v0 ∈ ran(D(λ0)) by solving

Q[D(λ0)v0] = −Q[β−1
0 C(λ0)B(λ0)k + θ0D

′(λ0)k].

It is now straightforward to show that if (1-4) is denoted by a C1 mapping
of Hilbert spaces F : X×ran(D(λ0))×R3 → X×ran(D(λ0))×〈u〉×R, with
F = F (x, v, θ, β, λ), then dx,v,θ,βF (x0, v0, θ0, β0, λ0) ∈ BL(X×ran(D(λ0))×
R3, X × ran(D(λ0)) × 〈u〉 × R) is an isomorphism. The result now follows
from the implicit function theorem. ¤

In [1] it was shown that

µ = −P [C(λ)B(λ0)k]
P [D′(λ0)k]

,

where P is a projection taken from the above proof. We show below that
this value of µ arises as an eigenvalue of a particular matrix pencil.
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One can extend Theorem 1 to the case where the dimension of the null-
space of D(λ0) is not simple. In this case, one can reduce the problem
to a matrix pencil over a finite-dimensional space, (E, F ) say, the finite
eigenvalues of which determine how many of the eigenvalues of (M, L(λ))
diverge at λ0.

In the following, a hat on a Hilbert space represents an admissible com-
plexification. A µ0 ∈ C is said to be an algebraically simple, finite eigenvalue
of a matrix pencil (E, F ) if the real-valued function

µ 7→ det(E + µF ),

has a transverse zero at µ = µ0. This is equivalent to

det(E + µ0F ) = 0, ker(E + µ0F ) = 〈k〉 , Fk 6∈ ran(µ0E + F ).

Theorem 2 Suppose that A(λ) : X → X,B(λ) : Y → X and C(λ) : X →
Y is a C1-parameterised family bounded, linear operators and suppose that
D(λ) : Y → Y is a C2 family of bounded, linear operators. Suppose also
that D(λ0) is Fredholm of index zero with ker(D(λ0)) = 〈k1, k2〉 and let

Y = sp{u1, u2} ⊕ ran(D(λ0)).

Let P : Y → sp{u1, u2} be the projection operator along ran(D(λ0)) and let
P1,2 : Y → R be defined so that P [y] = u1P1[y] + u2P2[y]. Now take the real
matrices E, F given by

(Eij) := Pi[C(λ0)B(λ0)kj ], (Fij) := Pi[D′(λ0)kj ], (i, j = 1, 2).

Suppose that µ1,2 ∈ C satisfy det(E + µF ) = 0 and are algebraically simple.
Then there is a neighbourhood N ⊂ R containing λ0 and two C1 map-

pings (x1,2, y1,2, α1,2) : N\{λ0} → X̂ × Ŷ × C such that

lim
λ→λ0

(λ− λ0)α1,2(λ0) = µ1,2,

and α1,2(λ) ∈ σ(M,L(λ)) is an eigenvalue for all λ ∈ N\{λ0}.

This theorem is an example of the following more general result.

Theorem 3 Suppose that A(λ) : X → X,B(λ) : Y → X and C(λ) : X →
Y be a C1-parameterised family bounded, linear operators and suppose that
D(λ) : Y → Y is a C2 family of bounded, linear operators. Suppose also
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that D(λ0) is Fredholm of index zero with K := ker(D(λ0)) and dimK ≥ 1
and let W be a finite-dimensional space with

Y = W ⊕ ran(D(λ0)).

If P : Y → W are the projection operators along ran(D(λ0)), let us define
finite-dimensional, linear mappings E, F ∈ BL(W ) by

E := P [C(λ0)B(λ0)]|W , F := P [D′(λ0)]|W ,

now let µ ∈ C satisfy det(E+µF ) = 0 and be algebraically simple. There is a
neighbourhood N ⊂ R containing λ0 and a C1 mapping (x, y, α) : N\{λ0} →
X̂ × Ŷ × C such that

lim
λ→λ0

(λ− λ0)α(λ0) = µ,

and α(λ) ∈ σ(M, L(λ)) is an eigenvalue for all λ ∈ N\{λ0}.

Proof. The proof of this result is almost identical to that of Theorem 1.
The algebraic simplicity of µ is used to demonstrate that the linearisation
operator of the problem which corresponds to (1-4) is an isomorphism. ¤
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