A Simple Proof of the SIB Theorem

R. Beardmore

January 23, 2003

Abstract

This supersedes a previous version of the SIB theorem [1] (which contains an error) and gives a proof of SIB in the context of a 1 parameter family of operator matrix-pencils (M, L) on a pair of Hilbert spaces. The method of proof generalises to show that for suitable Fredholm pencils, there is a finite-dimensional space and a matrix pencil (E, F) on that space whose finite eigenvalues determine the number of diverging eigenvalues of (M, L).

1 The SIB Theorem

Theorem 1 (SIB) Suppose that X and Y are Hilbert spaces and let $A(\lambda)$: $X \rightarrow X, B(\lambda): Y \rightarrow X$ and $C(\lambda): X \rightarrow Y$ be a C^{1}-parameterised family bounded, linear operators and suppose that $D(\lambda): Y \rightarrow Y$ is a C^{2} family of bounded, linear operators. Suppose also that

1. $D\left(\lambda_{0}\right)$ is Fredholm of index zero with $\operatorname{ker}\left(D\left(\lambda_{0}\right)\right)=\langle k\rangle$,
2. $D^{\prime}\left(\lambda_{0}\right) k \notin \operatorname{ran}\left(D\left(\lambda_{0}\right)\right)$ and
3. $C\left(\lambda_{0}\right) B\left(\lambda_{0}\right) k \notin \operatorname{ran}\left(D\left(\lambda_{0}\right)\right)$.

Now define the operator pencil

$$
(M, L(\lambda)):=\left(\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
A(\lambda) & B(\lambda) \\
C(\lambda) & D(\lambda)
\end{array}\right)\right) .
$$

There is a non-zero $\mu \in \mathbb{R}$, a neighbourhood $N \subset \mathbb{R}$ containing λ_{0} and C^{1} mappings $(x, y, \alpha): N \backslash\left\{\lambda_{0}\right\} \rightarrow X \times Y \times \mathbb{R}$ such that

$$
\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right) \alpha\left(\lambda_{0}\right)=\mu,
$$

and $\alpha(\lambda) \in \sigma(M, L(\lambda))$ is an eigenvalue for all $\lambda \in N \backslash\left\{\lambda_{0}\right\}$.

Proof. By assumption we can find a closed subspace $K \subset X$ such that $Y=\langle k\rangle \oplus K$ and $Y=\langle u\rangle \oplus \operatorname{ran}\left(D\left(\lambda_{0}\right)\right)$, where $\operatorname{ker}\left(D\left(\lambda_{0}\right)^{*}\right)=\langle u\rangle$. Now let

$$
y=\theta k /\left(\lambda-\lambda_{0}\right)+v \in\langle k\rangle \oplus K,
$$

and set $\beta=\left(\lambda-\lambda_{0}\right) \alpha$. The eigenvalue problem

$$
\alpha M z=L(\lambda) z, \quad\|M z\|^{2}=1, \quad z \in X \times Y
$$

becomes

$$
\begin{align*}
\beta x & =\left(\lambda-\lambda_{0}\right) A(\lambda) x+B(\lambda)\left(\theta k+\left(\lambda-\lambda_{0}\right) v\right) \tag{1}\\
0 & =P[C(\lambda) x+\theta \Delta(\lambda) k+D(\lambda) v] \tag{2}\\
0 & =Q[C(\lambda) x+\theta \Delta(\lambda) k+D(\lambda) v] \tag{3}\\
1 & =\|x\|^{2}, \tag{4}
\end{align*}
$$

where Δ is the C^{1} family of operators given by

$$
\Delta(\lambda)=\frac{D(\lambda)-D\left(\lambda_{0}\right)}{\lambda-\lambda_{0}}, \quad \Delta\left(\lambda_{0}\right)=D^{\prime}\left(\lambda_{0}\right) .
$$

In addition, $Q+P$ is the identity on Y and $Q: Y \rightarrow \operatorname{ran}\left(D\left(\lambda_{0}\right)\right)$ is the projection operator along $\langle u\rangle$.

Solving (1-4) when $\lambda=\lambda_{0}$ leads to

$$
x_{0}=B\left(\lambda_{0}\right) k /\left\|B\left(\lambda_{0}\right) k\right\|, \beta_{0}=-\frac{P\left[C\left(\lambda_{0}\right) B\left(\lambda_{0}\right) k\right]}{\left[P D^{\prime}\left(\lambda_{0}\right) k\right]}, \theta_{0}=\beta_{0} /\left\|B\left(\lambda_{0}\right) k\right\|,
$$

and then we obtain $v_{0} \in \operatorname{ran}\left(D\left(\lambda_{0}\right)\right)$ by solving

$$
Q\left[D\left(\lambda_{0}\right) v_{0}\right]=-Q\left[\beta_{0}^{-1} C\left(\lambda_{0}\right) B\left(\lambda_{0}\right) k+\theta_{0} D^{\prime}\left(\lambda_{0}\right) k\right] .
$$

It is now straightforward to show that if (1-4) is denoted by a C^{1} mapping of Hilbert spaces $F: X \times \operatorname{ran}\left(D\left(\lambda_{0}\right)\right) \times \mathbb{R}^{3} \rightarrow X \times \operatorname{ran}\left(D\left(\lambda_{0}\right)\right) \times\langle u\rangle \times \mathbb{R}$, with $F=F(x, v, \theta, \beta, \lambda)$, then $d_{x, v, \theta, \beta} F\left(x_{0}, v_{0}, \theta_{0}, \beta_{0}, \lambda_{0}\right) \in B L\left(X \times \operatorname{ran}\left(D\left(\lambda_{0}\right)\right) \times\right.$ $\left.\mathbb{R}^{3}, X \times \operatorname{ran}\left(D\left(\lambda_{0}\right)\right) \times\langle u\rangle \times \mathbb{R}\right)$ is an isomorphism. The result now follows from the implicit function theorem.

In [1] it was shown that

$$
\mu=-\frac{P\left[C(\lambda) B\left(\lambda_{0}\right) k\right]}{P\left[D^{\prime}\left(\lambda_{0}\right) k\right]}
$$

where P is a projection taken from the above proof. We show below that this value of μ arises as an eigenvalue of a particular matrix pencil.

One can extend Theorem 1 to the case where the dimension of the nullspace of $D\left(\lambda_{0}\right)$ is not simple. In this case, one can reduce the problem to a matrix pencil over a finite-dimensional space, (E, F) say, the finite eigenvalues of which determine how many of the eigenvalues of $(M, L(\lambda))$ diverge at λ_{0}.

In the following, a hat on a Hilbert space represents an admissible complexification. A $\mu_{0} \in \mathbb{C}$ is said to be an algebraically simple, finite eigenvalue of a matrix pencil (E, F) if the real-valued function

$$
\mu \mapsto \operatorname{det}(E+\mu F),
$$

has a transverse zero at $\mu=\mu_{0}$. This is equivalent to

$$
\operatorname{det}\left(E+\mu_{0} F\right)=0, \operatorname{ker}\left(E+\mu_{0} F\right)=\langle k\rangle, F k \notin \operatorname{ran}\left(\mu_{0} E+F\right) .
$$

Theorem 2 Suppose that $A(\lambda): X \rightarrow X, B(\lambda): Y \rightarrow X$ and $C(\lambda): X \rightarrow$ Y is a C^{1}-parameterised family bounded, linear operators and suppose that $D(\lambda): Y \rightarrow Y$ is a C^{2} family of bounded, linear operators. Suppose also that $D\left(\lambda_{0}\right)$ is Fredholm of index zero with $\operatorname{ker}\left(D\left(\lambda_{0}\right)\right)=\left\langle k_{1}, k_{2}\right\rangle$ and let

$$
Y=\operatorname{sp}\left\{u_{1}, u_{2}\right\} \oplus \operatorname{ran}\left(D\left(\lambda_{0}\right)\right) .
$$

Let $P: Y \rightarrow \operatorname{sp}\left\{u_{1}, u_{2}\right\}$ be the projection operator along $\operatorname{ran}\left(D\left(\lambda_{0}\right)\right)$ and let $P_{1,2}: Y \rightarrow \mathbb{R}$ be defined so that $P[y]=u_{1} P_{1}[y]+u_{2} P_{2}[y]$. Now take the real matrices E, F given by

$$
\left(E_{i j}\right):=P_{i}\left[C\left(\lambda_{0}\right) B\left(\lambda_{0}\right) k_{j}\right], \quad\left(F_{i j}\right):=P_{i}\left[D^{\prime}\left(\lambda_{0}\right) k_{j}\right], \quad(i, j=1,2)
$$

Suppose that $\mu_{1,2} \in \mathbb{C}$ satisfy $\operatorname{det}(E+\mu F)=0$ and are algebraically simple.
Then there is a neighbourhood $N \subset \mathbb{R}$ containing λ_{0} and two C^{1} mappings $\left(x_{1,2}, y_{1,2}, \alpha_{1,2}\right): N \backslash\left\{\lambda_{0}\right\} \rightarrow \hat{X} \times \hat{Y} \times \mathbb{C}$ such that

$$
\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right) \alpha_{1,2}\left(\lambda_{0}\right)=\mu_{1,2},
$$

and $\alpha_{1,2}(\lambda) \in \sigma(M, L(\lambda))$ is an eigenvalue for all $\lambda \in N \backslash\left\{\lambda_{0}\right\}$.
This theorem is an example of the following more general result.
Theorem 3 Suppose that $A(\lambda): X \rightarrow X, B(\lambda): Y \rightarrow X$ and $C(\lambda): X \rightarrow$ Y be a C^{1}-parameterised family bounded, linear operators and suppose that $D(\lambda): Y \rightarrow Y$ is a C^{2} family of bounded, linear operators. Suppose also
that $D\left(\lambda_{0}\right)$ is Fredholm of index zero with $K:=\operatorname{ker}\left(D\left(\lambda_{0}\right)\right)$ and $\operatorname{dim} K \geq 1$ and let W be a finite-dimensional space with

$$
Y=W \oplus \operatorname{ran}\left(D\left(\lambda_{0}\right)\right)
$$

If $P: Y \rightarrow W$ are the projection operators along $\operatorname{ran}\left(D\left(\lambda_{0}\right)\right)$, let us define finite-dimensional, linear mappings $E, F \in B L(W)$ by

$$
E:=\left.P\left[C\left(\lambda_{0}\right) B\left(\lambda_{0}\right)\right]\right|_{W}, \quad F:=\left.P\left[D^{\prime}\left(\lambda_{0}\right)\right]\right|_{W}
$$

now let $\mu \in \mathbb{C}$ satisfy $\operatorname{det}(E+\mu F)=0$ and be algebraically simple. There is a neighbourhood $N \subset \mathbb{R}$ containing λ_{0} and a C^{1} mapping $(x, y, \alpha): N \backslash\left\{\lambda_{0}\right\} \rightarrow$ $\hat{X} \times \hat{Y} \times \mathbb{C}$ such that

$$
\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right) \alpha\left(\lambda_{0}\right)=\mu
$$

and $\alpha(\lambda) \in \sigma(M, L(\lambda))$ is an eigenvalue for all $\lambda \in N \backslash\left\{\lambda_{0}\right\}$.
Proof. The proof of this result is almost identical to that of Theorem 1. The algebraic simplicity of μ is used to demonstrate that the linearisation operator of the problem which corresponds to (1-4) is an isomorphism.

References

[1] R. Beardmore, Proc. Royal Soc. A(2001) 457, pp.1295-1305

