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Abstract. Motivated by the large number of solutions obtained when applying bifurcation
algorithms to the Ornstein-Zernike (OZ) equation with the hyper-netted chain (HNC) closure from
liquid state theory, we provide existence and bifurcation results for a computationally-motivated
version of the problem.

We first establish the natural result that if the potential satisfies a short-range condition then a
low-density branch of smooth solutions exists. We then consider the so-called truncated–OZ HNC
equation that is obtained when truncating the region occupied by the fluid in the original OZ equation
to a finite ball, as is often done in the physics literature before applying a numerical technique.

On physical grounds one expects to find one or two solution branches corresponding to vapour
and liquid phases of the fluid. However, we are able to demonstrate the existence of infinitely many
solution branches and bifurcation points at very low temperatures for the truncated one-dimensional
problem provided that the potential is purely repulsive and homogeneous.

1. Introduction. The Ornstein-Zernike (OZ) equation [11] is a renewal equation
introduced in 1914 as a model for the molecular structure of a fluid with mean particle
density ρ:

h(r) = c(r) + ρ

∫

Rd

h(‖x− y‖)c(‖y‖)dy,(1.1)

where x, y ∈ Rd and d ≤ 3. Here and throughout, r = ‖x‖ is the spatial coordinate
where the norm is Euclidean and the structure of the fluid can be deduced from h,
the pair correlation function, where c is the direct correlation function. Finally, we
also define the indirect correlation function γ := h− c.

If the direct correlation function were known for a given fluid, one could in princi-
ple deduce the total correlation function via a contraction mapping argument. How-
ever, if this information is not known a-priori both correlation functions have to be
found from (1.1). Clearly this is not possible and a closure relation must be supple-
mented in order to allow one to determine the structure of the fluid.

The closure relation that augments (1.1) depends on both the intermolecular
potential u and the Boltzmann factor β = 1/(TkB), where T is the temperature of
the fluid. While there are many closures in the physics and chemistry literature, we
only consider the hyper-netted chain (HNC) closure:

h(r) = −1 + e−βu(r) · exp(h(r)− c(r)) (∀r ≥ 0).(1.2)

We shall often write (1.2) in the following form

h(r) = f(r) + e−βu(r) · exp1(h(r)− c(r)),(1.3)

where f := −1 + e−βu(r) is the so-called Mayer f-function which, for fixed β > 0 is
always extended to be equal to −1 at r = 0. Moreover, exp1(x) := −1 + ex for all
x ∈ R and this of course coincides with the sum

∑∞
n=1

xn

n! .
For any set Ω and a suitably defined function a : Ω → R, we define a Nemitskii

operator Mβ(a) via

Mβ(a)(r) := f(r) + e−βu(r) · exp1(a(r)),(1.4)
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the domain of which will be a space of radial functions on Rd that will be specified
in due course. Note that when this domain is specified, all elements of the system
of equations that result from (1.1-1.2) will be C∞-smooth and so we refrain from
stipulating precise smoothness properties of the systems of equations that appear in
this article.

Fig. 1.1. (left) Three schematic solution branches: FB denotes a fold bifurcation and C2

possesses a spinodal at ρ = ρspi. (right) Four solution branches obtained at a fixed temperature for a
Lennard-Jones fluid computed using a numerical continuation code developed in Matlab and applied
to (1.1-1.2) for d = 3 (see [2]).

1.1. The Problem. Two diagrams are shown in Figure 1.1 and in the left-hand
of the two we have depicted the kind of bifurcation structure one may expect to find
in (1.1-1.2). In the curve marked C3 there corresponds a single vapour correlation
function γ at each density ρ. However, in the curve marked C2 there is a value
of density ρspi beyond which the solution branch will not pass and a bifurcation at
infinity occurs: this is a so-called spinodal that is associated with a phase-transition
from liquid to vapour, or vice-versa. Let us make this a little more precise with a
definition.

Definition 1. There is a spinodal of (1.1-1.2) at ρspi if there is a sequence
(hn, cn, ρn) of solutions such that limn→∞ ρn = ρspi > 0 and limn→∞

∫
Rd hn = ∞.

However, the curve marked C1 from Figure 1.1(left) is more typical of what is often
computed in practice using continuation algorithms [2]. In this case there is a maximal
density supported by the solution branch, but this behaviour is not associated with
a spinodal, but rather with a fold bifurcation. We can see this in the right-hand
diagram of Figure 1.1 where the Lennard-Jones potential with collision distance and
well-depth both unity have been used, so that

u(r) = 4 (r−12 − r−6),

and we have taken β = 0.73. There is not only a single vapour branch, nor even
just a vapour-liquid pair of solution branches, but in fact four solution branches have
been located and many of the solutions contained on these branches are not physically
relevant.

The purpose of this paper is to demonstrate that the apparently large number
of computed solution branches is not simply an artefact of the numerical method
applied to (1.1-1.2), but that when (1.1) is modified to form an integral over a finite
ball, the resulting equation supports a large number of solutions in certain regions of
parameter space. Despite the advancements in the numerical treatment of problems
over unbounded domains, this replacement remains standard practise in the physics
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and chemistry literature and has been undertaken in all of the papers we have cited
that include computational results, even if the authors have not explicitly stated this;
see any of [17, 3, 15, 14, 12, 4, 9, 8, 7] for example.

We only treat the case of repulsive intermolecular potentials, our analysis does
not yet extend to potentials with regions of attraction such as the Lennard-Jones
potential given above. Moreover, we only cover the details of the one-dimensional or
d = 1 case of (1.1) although results for the d ≥ 2 cases follow from similar arguments.

In Figure 1.1(right) a horizontal line marks a region of density values that lies
between two fold bifurcations on the solution branches plotted with full lines (not
dashed lines); it is thought that the existence of such a region may relate to the
existence of spinodals and phase transitions in the Ornstein-Zernike equation. A
series of discussions regarding the meaning of bifurcations in the Ornstein-Zernike
equation can be found in [15, 14, 12, 7, 17, 4, 9, 3, 1].

1.2. Notation. For clarity we continue with a brief synopsis of our notation. If
X and Y are Banach spaces then BL(Y, X) denotes the space of continuous linear
mappings from Y to X and BL(X) = BL(X, X). If J ⊆ R is an open interval, Lp(J)
is the space of measurable functions u : J → R such that

∫
J
|u(r)|pdr < ∞. By Ck(J)

we mean the space of k-times continuously differentiable maps and then W k,p(J) can
be identified with the space of functions in Ck−1(J) whose k-th weak derivative lies
in Lp(J), where p ∈ N ∪ {∞}. By Y ↪→ X we mean that the first space is compactly
embedded in the second. To ensure no ambiguity arises when using a particular norm,
the notation ‖x‖X may be used for x ∈ X and ‖y‖Y for y ∈ Y and we shall use 〈·, ·〉
for the usual L2-inner product.

If R+ = [0,∞) then BC(R+) denotes the space of bounded, continuous maps from
R+ to R and BC(Rd) is defined to be the space of continuous and bounded, radially
symmetric functions mapping into R if d ∈ {1, 2, 3}. Thus, BC(R1) is the space of
continuous and bounded even functions mapping into R that can be identified with
BC(R+). By Xd we mean the Banach space BC(Rd)∩L1(Rd) that can be identified
with the weighted space

{u : R+ → R continuous : rd−1u(r) ∈ L1(R+)} ∩BC(R+),

with norm ‖u‖Xd = max(‖u‖L1(Rd), ‖u‖BC(Rd)).
Now suppose that a, b are suitably defined radially symmetric functions defined

on Rd and mapping into R. Any element a ∈ Xd satisfies the inequality

‖a‖Lp(Rd) ≤ (‖a‖p−1
BC(Rd)

‖a‖L1(Rd))
1/p ≤ ‖a‖Xd

and so lies in Lp(Rd) for each p ≥ 1. From standard properties of convolution on
Rd, a ∗ b is a radially symmetric function and ‖a ∗ b‖L1(Rd) ≤ ‖a‖L1(Rd)‖b‖L1(Rd)

and ‖a ∗ b‖BC(Rd) ≤ ‖a‖L1(Rd)‖b‖BC(Rd), so that ∗ provides Xd with the structure
of a Banach algebra. We note that the bilinear form B : Xd × Xd → Xd given by
B(a, b) = a ∗ b is continuously Fréchet differentiable. Moreover, for a, b ∈ Xd there
results

‖ab‖L1 ≤ ‖a‖L1‖b‖BC and ‖ab‖BC ≤ ‖a‖BC‖b‖BC ,

so that pointwise multiplication also provides an algebra structure on Xd.
Let R > 0 be a real parameter. If a : Rd → R then E

R
(a)(r) denotes the restricted

function given by E
R
(a)(r) = a(‖x‖) for 0 ≤ ‖x‖ < R and E

R
(a)(r) = 0 otherwise. We

shall also use the natural restriction or embedding operator R
R

: Xd → C0(BR(0))
where BR(x) denotes the open Euclidean ball of radius R about x in Rd and an
overbar denotes closure.
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2. A Fixed-Point Problem for the Indirect Correlation Function. A
single convolution equation for γ in the form of a fixed-point problem can be obtained
from (1.1-1.2), namely

γ = ρ[−γ + Mβ(γ)] ∗Mβ(γ),(2.1)

and as a result it is convenient to define the nonlinear operator

Nβ(γ) := [−γ + Mβ(γ)] ∗Mβ(γ).(2.2)

We will need the potential u to be sufficiently short-range that f ∈ Xd, so that the
condition given in [13] applies:

∫ ∞

0

rd−1|
f(r)︷ ︸︸ ︷

exp1(−βu(r)) |dr < ∞.(2.3)

Condition (2.3) is satisfied by the Mayer f-function if u satisfies
(U1) limr→0 u(r) = +∞,
(U2) u is continuous on (0,∞) and
(U3)

∫∞
1

rd−1u(r)dr < ∞.

The Mayer f-function associated with the Lennard-Jones potential is therefore
short-range for any value of d. However, for the potential u(r) = Const/r the as-
sociated Mayer f -function is long-range in any dimension and u(r) = Const/r2 is
long-range in two or more dimensions, but is short range in one-dimension. A poten-
tial of the form u(r) = e−kr/r is short-ranged in any dimension where the parameter
k takes any positive value.

2.1. Existence of a Small-Density Vapour Solution Branch. The follow-
ing basic theorem shows that (1.1-1.2) possesses a branch of small-density solutions
under reasonable assumptions.

Theorem 1 (Existence of a vapour solution branch). Suppose that (U1-U3)
hold, d ∈ {1, 2, 3} and β > 0, then there is a ρ0 > 0 and a mapping S : [0, ρ0) → Xd

such that if γ = S(ρ) then γ satisfies (2.1). Thus (1.1-1.2) has a locally unique,
small-density solution branch.

Theorem 1 is a direct consequence of the implicit function theorem applied to
(2.1). Such an argument works thanks to the following proposition.

Proposition 1. Suppose that d ∈ {1, 2, 3}, β > 0 and that (U1-U3) apply. Then
Mβ : Xd → Xd is a C1 mapping and since Xd is a convolution algebra, Nβ is also a
C1 mapping on Xd.

Proof. Fixing β > 0, we omit the dependence of Mβ on β and simply write M in
the proof. We show first that M : Xd → Xd is well-defined. Using a subscript L1 to
denote the one-dimensional L1-norm of a function a so that ‖a‖L1 =

∫∞
0
|a(r)|dr,

we have

‖rd−1M(γ)‖L1 ≤ ‖rd−1 exp1(−βu(r))‖L1 + ‖e−βu(r)‖BC

∫ ∞

0

rd−1| exp1(γ(r))|dr.

The first term in this expression is finite by assumption and the last term can be
bounded as follows:

∫ ∞

0

rd−1| exp1(γ(r))|dr =
∫ ∞

0

rd−1

∣∣∣∣∣
∞∑

n=1

1
n !

γ(r)n

∣∣∣∣∣ dr
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≤
∫ ∞

0

rd−1
∞∑

n=1

1
n !
|γ(r)|n dr

≤
∫ ∞

0

rd−1
∞∑

n=1

1
n !
|γ(r)|‖γ‖n−1

BC dr

≤
∞∑

n=0

1
(n + 1) !

‖γ‖n
BC

∫ ∞

0

rd−1|γ(r)|dr

≤ e‖γ‖BC‖rd−1γ‖L1 ,

which is finite. There remains to consider ‖M(γ)‖BC , but this is clearly bounded by
‖ exp1(−βu(r))‖BC + ‖e−βu(r)‖BC‖(e‖γ‖BC + 1) which is finite, so M is well-defined
on Xd.

Now we claim that M is Fréchet differentiable on Xd with derivative dM ∈
C0(X,BL(X)) given by dM(γ)[h] = L(γ)[h], for γ, h ∈ Xd, where L is the multipli-
cation operator acting on h given by

L(γ)[h] = e−βu(r) exp(γ)h.(2.4)

Let γ, γ1, γ2, h ∈ Xd and note that ‖L(γ)[h]‖BC ≤ ‖h‖BC‖e−βu(r) exp(γ)‖BC is
clearly finite, but also ‖rd−1L(γ)[h]‖L1 ≤ ‖rd−1h‖L1‖e−βu(r) exp(γ)‖BC , whence L :
Xd → BL(Xd) with

‖L(γ)‖BL(Xd) ≤ ‖e−βu(r) exp(γ)‖BC .

Now,

‖rd−1L(γ1)[h] − rd−1L(γ2)[h]‖L1 ≤
∫ ∞

0

rd−1e−βu(r)| exp(γ1)− exp(γ2)| · |h|dr

≤
∫ ∞

0

rd−1e−βu(r)

∣∣∣∣∣
∞∑

n=1

1
n !

(γn
1 − γn

2 )

∣∣∣∣∣ · |h|dr

≤
∫ ∞

0

rd−1e−βu(r)
∞∑

n=1

[
1

n !
|γ1 − γ2|

n−1∑

i=0

|γ1|i|γ2|n−(i+1)

]
|h|dr

≤ ‖γ1 − γ2‖BC‖rd−1h‖L1‖e−βu(r)‖BCΣ(γ1, γ2),

and also

‖L(γ1)[h]− L(γ2)[h]‖BC ≤ ‖e−βu(r)‖BC‖(exp(γ1)− exp(γ2))h‖BC

≤ ‖γ1 − γ2‖BC‖h‖BC‖e−βu(r)‖BCΣ(γ1, γ2),

where

Σ(γ1, γ2) =
∞∑

n=1

n−1∑

i=0

‖γ1‖i
BC‖γ2‖n−(i+1)

BC

n !
≤ emax(‖γ1‖BC ,‖γ2‖BC) < ∞.

These inequalities demonstrate that

‖L(γ1)− L(γ2)‖BL(Xd) ≤
(
emax(‖γ1‖BC ,‖γ2‖BC)‖e−βu(r)‖BC

)
‖γ1 − γ2‖Xd ,

so that L : Xd → BL(Xd) is locally Lipschitz continuous.
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To show that M is differentiable with L as its derivative, consider

‖M(γ + h) − M(γ)− L(γ)[h]‖Xd

= ‖e−βu(r)(exp1(γ + h)− exp1(γ)− exp(γ)h)‖Xd

= ‖e−βu(r) exp(γ)(exp1(h)− h)‖Xd

≤ ‖e−βu(r) exp(γ)‖BC‖ exp1(h)− h‖Xd .

Since

| exp1(z)− z| =
∣∣∣∣∣
∞∑

n=2

zn

n !

∣∣∣∣∣ ≤ |z|2
∞∑

n=0

|z|n
(n + 2) !

≤ |z|2e|z| (z ∈ R),

we find ‖ exp1(h)− h‖BC ≤ ‖h‖2BCe‖h‖BC and
∫ ∞

0

rd−1| exp1(h)− h|dr ≤
∫ ∞

0

rd−1|h|2e‖h‖BC dr ≤ ‖rd−1h‖L1‖h‖BCe‖h‖BC ,

so that

‖ exp1(h)− h‖Xd ≤ ‖h‖2Xde‖h‖Xd .

Since this quantity is O(‖h‖2Xd) as h → 0 in Xd, we conclude that M is differentiable,
and since dM was shown to be Lipschitz, M is C1. As a result, Nβ is the composition
of C1 mappings on Xd and so is also C1 with

dNβ(γ)[h] = (dM(γ)[h]− h) ∗M(γ) + (M(γ)− γ) ∗ dM(γ)[h].

Theorem 1 carries through with minor modifications to the case whereby BC(Rd)
is replaced with L∞(Rd) and (U2) is suitably modified to the condition that e−βu(r) ∈
L∞(R+). This is an important alteration as potentials are often truncated or redefined
in the far-field, resulting in non-smooth potentials [16]. For instance, one can obtain
an extension of Theorem 1 to cover the cases of the modified Lennard-Jones potentials

u(r) =
{

4(r−12 − r−6) : 0 ≤ r ≤ R0,
0 : r > R0.

and

u(r) =
{

4(r−12 − r−6) : 0 ≤ r ≤ R0,
∞ : r > R0.

3. The Truncated OZ-HNC Equation. The numerical computations that
have been performed and reported in the liquid state literature for the Ornstein-
Zernike equation are not undertaken for the infinite domain problem (1.1-1.2) itself.
Instead computations are performed for a truncated version of the problem that has
the effect of reducing the convolution operator to a finite region of integration.

This has obvious computational advantages, but may change the character of
the equations considerably. We now develop some bifurcation results for the integral
equation that arises from performing such a truncation operation and we demonstrate
that this problem possesses an intricate bifurcation structure when using either density
or temperature (in the guise of β) as a bifurcation parameter.
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Let H denote the Hankel transform that is normalised to be idempotent in the
space of radially symmetric functions in L2(R3), so that

H(a(r))(s) =
(

2
π

)1/2 ∫ ∞

0

sinc(rs)a(r)r2dr.

Now apply the convolution theorem to write (1.1) in the form

h(r) = c(r) + ρ · H(Hh · Hc)(r).(3.1)

There are different choices of how to truncate the fluid and in [8] the authors
undertake the following operation: introduce a large finite section parameter R and
approximate h and c by their near-field truncations h

R
= E

R
(h) and c

R
= E

R
(c). One

now studies (1.2) restricted to [0, R] coupled to the integral equation

h
R
(r) = c

R
(r) + ρR

R
HE

R
[H(h

R
) · H(c

R
)](3.2)

that corresponds to (3.1).
Another feasible way of approximating (1.1) for the purposes of numerical dis-

cretisation is could be to replace that equation with

h(r) = c(r) + ρR
R

[∫

‖y‖≤R

(E
R
h)(‖x− y‖)(E

R
c)(‖y‖)dy

]
.(3.3)

Taking our motivation from (3.3) the equation that is the subject of the remainder of
the paper is the following system of integro-algebraic equations:

h(r) = c(r) + ρRR

[∫ R

−R

(ERh)(|r − s|)(ERc)(|s|)ds

]
,(3.4)

h(r) = f(r) + e−βu(r) exp1(h(r)− c(r)),(3.5)

that holds for all r such that 0 ≤ r ≤ R. The truncated convolution operator in (3.4-
3.5) arises when applying an analogous truncation procedure to the one-dimensional
convolution operator

(h ∗ c)(r) =
∫

R
h(|r − s|)c(|s|)ds.

The following lemma shows that we can obtain simple compactness and regularity
properties for the windowed convolution operator BR defined by

B
R
(a, b) =

∫ R

−R

(E
R
a)(|r − s|)(E

R
b)(|s|)ds(3.6)

for suitable functions a, b : [0, R] → R.
Lemma 1. The symmetric, bilinear form BR has the following smoothing prop-

erties:
1. B

R
: X ×X → X where X is either L∞(0, R) or C0[0, R],

2. B
R

: C0[0, R]×W 1,p(0, R) → W 1,∞(0, R), (1 ≤ p ≤ ∞),
3. BR : W 1,∞(0, R)×W 1,∞(0, R) → W 2,∞(0, R) and
4. BR : Ck[0, R]× Ck[0, R] → Ck+1[0, R], (k ∈ {1, 2, 3, ...}).
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Proof. Property (1) of the lemma is immediate from ‖BR(a, b)‖X ≤ 2R‖a‖X‖b‖X .
Now let a, b ∈ C∞[0, R], t ∈ [0, R] and write

B
R
(a, b)(t) =

∫

R
(E

R
a)(|t− s|)(E

R
b)(|s|)ds =

∫ R

−R

(E
R
a)(|t− s|)b(|s|)ds,

(s 7→ t− s) =
∫ t+R

t−R

(E
R
a)(|s|)b(|t− s|)ds,

=

(∫ 0

t−R

+
∫ t+R

0

)
(E

R
a)(|s|)b(|t− s|)ds,

(s 7→ −s) =
∫ R−t

0

a(s)b(t + s)ds +
∫ R

0

a(s)b(|t− s|)ds,

=
∫ t

0

a(s)b(t− s)ds +
∫ R

t

a(s)b(s− t)ds +
∫ R−t

0

a(s)b(t + s)ds,

=
∫ t

0

a(t− s)b(s)ds +
∫ R

t

a(s− t)b(s)ds +
∫ R−t

0

a(s + t)b(s)ds,

which clearly illustrates the symmetry of BR . Properties 2-4 of the lemma are estab-
lished by the formulae

d

dt
B

R
(a, b)(t) =

∫ t

0

a(s)b′(t− s)ds +
∫ R

t

a(s)b′(s− t)ds +
∫ R−t

0

a(s)b′(t + s)ds

−a(R− t)b(R)

=
∫ t

0

a(t− s)b′(s)ds +
∫ R

t

a(s− t)b′(s)ds +
∫ R−t

0

a(s + t)b′(s)ds

−a(R− t)b(R)

and

d2

dt2
B

R
(a, b)(t) =

∫ t

0

a′(t− s)b′(s)ds−
∫ R

t

a′(s− t)b′(s)ds +
∫ R−t

0

a′(t + s)b′(s)ds

−a′(R− t)b(R)− a(R)b′(R− t),

that can be extended to the chosen spaces by a density argument.

3.1. The One-Dimensional, Truncated OZ-HNC Equation. In a trun-
cated domain no short-range decay requirements are required in order to obtain a
small-density solution branch of (3.4-3.5). This allows one to work, for instance, with
the Dirichlet potential u(r) = Const/r which is long-range for the infinite-domain
problem (1.1-1.2).

With this comment in mind, the remainder of the section is dedicated to the
integral equation

γ = ρ

Nβ,R(γ)︷ ︸︸ ︷
BR(Mβ(γ)− γ, Mβ(γ)),(3.7)

where, just as in the infinite-domain case, Mβ : X → X is given by

Mβ(γ) = exp1(−βu(r)) + e−βu(r) exp1(γ), 0 ≤ r ≤ R,

where we have in mind X = C0[0, R] or X = L∞(0, R). We continue with the
following theorem that is the analogy of Theorem 1 for (3.7).
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Theorem 2. Suppose that β > 0, u satisfies (U1), exp(−βu) ∈ X where X is
either L∞(0, R) or X = C0[0, R] and d = 1. Then there is a ρ0 > 0 and a mapping
S : [0, ρ0) → X such that if γ = S(ρ) then, γ satisfies the one-dimensional, truncated
Ornstein-Zernike equation (3.7).

Proof. This follows immediately from the fact that the operator Nβ,R defined in
(3.7) is smooth in either candidate space X.

Throughout the following section the derivatives of Nβ,R and Mβ will be needed
on several occasions, so we list them now for convenience (dropping the reference to
R and β temporarily for clarity):

(D1) M ′(γ)h := dγM(γ)[h] = e−βu(r) · eγh,
(D2) M ′′(γ)[h, k] := d2

γγM(γ)[h, k] = e−βu(r) · eγhk,
(D3) dγN(γ)[h] = B

R
(M(γ), (M ′(γ)− 1)h) + B

R
(M ′(γ)h,M(γ)− γ),

(D4) and

d2
γγN(γ)[h, k] = B

R
(M ′(γ)k, (M ′(γ)− 1)h) + B

R
(M(γ), M ′′(γ)hk) +

B
R
(M ′′(γ)hk,M(γ)− γ) + B

R
(M ′(γ)h, (M ′(γ)− 1)k).

These derivatives are only formally defined without the specification of suitable
domains for the underlying operators, but these shall be made in due course that
render (D1-D4) rigorous.

3.2. Global Bifurcation Structure. We now show that by placing some dif-
ferentiability properties on the Meyer f-function associated with the potential u, one
can obtain global information regarding the vapour solution branch associated with
(3.7).

Theorem 3. Suppose that X denotes the space W 1,p(0, R) and β > 0, u satisfies
(U1) and exp1(−βu) ∈ X for some p ∈ {1, 2, 3, ...}, then there is a ρ0 > 0 and a
mapping S : [0, ρ0) → X such that if γ = S(ρ) then γ satisfies (3.7).

1. If we define the set Σ = {(γ, ρ) ∈ X × [0,∞) : γ = ρNβ,R(γ), ρ ≥ 0}, then
there is a connected, unbounded set C ⊂ Σ that contains the graph of S.

2. If there is a sequence (γn, ρn) ∈ C such that limn→∞ ρn = 0, then either (i)
limn→∞ γn = 0 uniformly or (ii) limn→∞ ‖γn‖X = ∞.

3. If the Mayer f-function associated with the potential u lies in C∞[0, R], then
γ ∈ C∞[0, R].

Proof. The small-density existence result in X follows from the implicit function
theorem because the mapping Mβ satisfies Mβ : X → X, which follows from the
fact that γ 7→ exp1(γ) is C1 on W 1,p(0, R). From Lemma 1 the map Nβ,R(γ) =
B

R
(Mβ(γ) − γ, Mβ(γ)) satisfies Nβ,R : X → W 1,∞(0, R) ↪→ X and so is compact.

The Leray-Schauder continuation principle [18] applies and the first two conclusions
in the statement of the theorem follow.

The last part of the theorem comes from the bootstrapping properties of the map
Nβ,R from properties (1-4) of Lemma 1 that apply when the Mayer f-function is C∞-
smooth. These imply that if γ = ρNβ,R(γ) and γ ∈ W 1,p(0, R) then γ ∈ W 1,∞(0, R)
by property (2) of Lemma 1, but then Nβ,R : W 1,∞(0, R) → W 2,∞(0, R) by property
(3) of Lemma 1 so that γ ∈ C1[0, R]. Hence, by property (4) of Lemma 1, γ ∈ C2[0, R]
and the statement of the theorem follows by a similar inductive argument.

From Theorem 3 we argue that the Mayer f-function exp1(−βu) can be non-
smooth to a certain degree and yet one still may obtain global solution existence for
solutions of (3.7); f must however be continuous, but it may have cusps and corners.
However, Theorem 3 does not cover the case whereby u has jump discontinuities in
which case we still only have a small density existence result.
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The smoothness requirement on the potential in Theorem 3 stipulates that the
weak derivative of exp1(−βu), namely the function −β · u′e−βu, has integrable p-
th power on (0, R), where u′ denotes the weak derivative of u on (0, R). This
condition holds for many potentials, including the potentials u(r) = 4ε(σ/r)n, for
n ∈ {1, 2, 3, ...}, and for the Lennard-Jones potential.

In the case of a purely repulsive potential of the form

u(r) = Const r−q

for a positive power q, the following result may be established.
Theorem 4. Suppose that u satisfies (U1), is strictly positive (that is, repulsive)

and positively homogeneous:

u(r) > 0, u(λr) = λαu(r), (for some α < 0, ∀λ > 0, r ∈ (0, R]).

Suppose also that exp1(−u) ∈ C1[0, R], then there a discrete set R ⊂ (0,∞) such
that for each positive ρ 6∈ R there is an unbounded, one-dimensional Cartesian curve
Cρ ⊂ C0[0, R] × [0,∞) such that each (γ, β) ∈ Cρ is a solution of the truncated
Ornstein-Zernike equation (3.7) for this value of ρ.

Proof. First note that the positive homogeneity of u implies that the relationship
u(δr) = βu(r) holds identically in r when δ = β1/α. Now, the extended function

f̂(r) =
{

e−u(r) : r ∈ [0, R]
0 : r ∈ [−R, 0]

is C1 smooth by assumption and by (U1) with f̂(0) = 0. Therefore, the family of
extended Mayer f-functions, υ(r, δ) = exp1(f̂(δr)) is also C1 on [0, R]× (−∆,∆) as it
is a composition of C1 functions, here ∆ ∈ (0, 1) is a sufficiently small real constant.

Now consider

M(γ, δ) := exp1(−u(rδ)) + e−u(rδ) exp1(γ)

as a one-parameter family of maps M : C0[0, R]×(−∆, ∆) → C0[0, R]. In fact, this is a
C1-smooth one parameter family that satisfies M(γ, 0) = −1 because limδ→0 e−u(rδ) =
0. We now seek solutions to the following version of the Ornstein-Zernike equation
with HNC closure,

γ = ρ ·B
R
(M(γ, δ)− γ, M(γ, δ)) (=: ρ ·NR(γ, δ))(3.8)

for γ ∈ C0[0, R] and small δ. Note that (3.8) is directly related to (3.7) via the
replacement δ = β1/α.

We first consider the equation for γ0 that is obtained by setting δ = 0 in (3.8),
namely

γ0 = ρNR(γ0, 0),

which is the affine equation

γ0 = ρBR(1 + γ0, 1).(3.9)

For a ∈ C0[0, R], we define a linear operator K by convolution with unity:

(Ka)(t) := B
R
(a, 1) =

∫ R

0

a(s)ds +
∫ R−t

0

a(s)ds,
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which can be written

(Ka)(t) =
∫ R

0

k(t, s)a(s)ds,

where the kernel k is strictly positive:

k(t, s) = 1 +
{

1 : 0 ≤ s ≤ R− t,
0 : otherwise.

Clearly K is a compact and self-adjoint integral operator on L2(0, R) and in fact
K : L2(0, R) → C1/2(0, R) ↪→ C0[0, R] so that the non-zero elements of the spectrum
of K as an operator on L2(0, R) and C0[0, R] are the same, but then K is injective on
L2(0, R) so 0 is not an element of the point spectrum of K. Thus K only has point
spectrum, apart from the zero element in its essential spectrum.

We now define the set R by

R := σ(K)−1 ∩ (0,∞).

Noting that K is strongly positive on C0[0, R]:

a ≥ 0 ⇒ Ka ≥ 0, a > 0 ⇒ Ka À 0,

by the Krein-Rutman theorem K has an algebraically simple, positive eigenvalue
given by its spectral radius with associated strictly positive eigenfunction. Hence R
is non-empty and discrete.

Returning to equation (3.9), this can now be written

(I − ρK)γ0 = ρ(2R− t),(3.10)

and I − ρK ∈ BL(C0[0, R]) is an isomorphism on C0[0, R] for ρ 6∈ σ(K). Therefore
(3.10) and hence (3.9) has a unique solution γ0 for ρ 6∈ R as ρ was assumed to be
positive in the statement of the theorem.

Now, the derivative of γ− ρN(γ, δ) at (γ0, 0) is the mapping I − ρdγN(γ0, 0) and
from (D1) dγM(γ, δ)[h] = e−u(rδ)eγ · h so that dγM(γ0, 0) = 0. By (D3) and the fact
that M(γ, 0) = −1

dγN(γ0, 0)[h] = BR(M(γ, 0)− γ, 0) + BR(−h,M(γ, 0)) = BR(h, 1) = Kh.

Hence, for positive ρ 6∈ R, I − ρdγN(γ0, 0) = I − ρK and as this is an isomorphism on
C0[0, R] and 2R − t ∈ C0[0, R], we can solve (3.8) by the implicit function theorem
for functions γ = γ(δ) in a neighbourhood of γ = γ0 and δ = 0 such that γ(0) = γ0.
As a result, a solution curve of (3.8) exists on which γ = γ(β1/α) for all β sufficiently
large and positive.

We would like to have a global version of Theorem 4. However, the dependence
on δ of the function e−u(rδ) is not analytic and it seems that we cannot apply the
global theory of analytic nonlinear problems from [5].

If we inspect the proof of Theorem 4 it becomes apparent that the result actually
shows that one can solve for an unbounded two-dimensional surface of solutions of
(3.7) as a Cartesian graph on which γ = γ(ρ, δ) near to δ = 0 and in a neighbourhood
of any positive value of ρ 6∈ R; we have included the statement of this result as a
separate result below for completeness (see Theorem 5).

Theorem 5. Suppose that u satisfies (U1), is strictly positive and positively
homogeneous and that exp1(−u) ∈ C1[0, R]. Then there a discrete set R ⊂ (0,∞)
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such that for each positive ρ0 6∈ R there is an unbounded, smooth two-dimensional
surface C2 ⊂ C0[0, R]×R2

+ depending on ρ0 such that each (γ, ρ, β) ∈ C2 is a solution
of (3.7) for this value of (ρ, β). Moreover, there are sequences (γn, ρn, βn)n≥1 ⊂ C2

such that ρn → ρ0 and βn →∞ as n →∞.
Proof. This follows the proof of Theorem 4. The final part follows as we can

graph γ as a function γ = γ(ρ, δ) near to (ρ, δ) = (ρ0, 0) on which β = δα and α < 0,
whence any sequence δn → 0 provides a sequence βn → 0 as claimed.

The question remains regarding what happens to the geometry of the surface C2

from Theorem 5 near to a value of ρ ∈ R, so we first give a precise description of the
set R.

Lemma 2. The set of reciprocals of eigenvalues of K from Theorem 4 (whose
positive elements form R) consists of two divergent sequences: the Dirichlet values
(±ρD

k )k≥2 and the non-local values (±ρN
k )k∈Z where ρD

k > 0 and ρN
k > 0. These are

given as follows:
• (Dirichlet boundary conditions) Each value ρ = ρD

k satisfies

ϕ′′ + ρ2ϕ = 0,

subject to Dirichlet boundary conditions

ϕ(0) = ϕ(R) = 0,

(
when

∫ R

0

ϕ(s)ds = 0

)
,

and we shall denote these solutions ϕD
k .

• (Non-local boundary conditions) Each value ρ = ρN
k satisfies

ϕ′′ + ρ2ϕ = 0,

subject to non-local boundary conditions

ϕ(0) = 2ρ

∫ R

0

ϕ(s)ds, ϕ(R) = ρ

∫ R

0

ϕ(s)ds

(
when

∫ R

0

ϕ(s)ds 6= 0

)
,

and we shall denote these solutions ϕN
k .

Hence ρD
k = kπ

R for all even k ≥ 2 and ρN
k satisfies the equation

sinc(ρN
k ·R) = (cos(ρN

k ·R) + 1)/R,

whence ρN
k ∼ kπ

R as k →∞ for odd and positive k.
Proof. If ρKϕ = ϕ is satisfied for ϕ ∈ L2(0, R) and ρ 6= 0, then ϕ ∈ C2[0, R]

follows. Now,

ϕ(t) = ρ

(∫ R

0

ϕ(s)ds +
∫ R−t

0

ϕ(s)ds

)
,(3.11)

yields

ϕ′(t) = −ρϕ(R− t) and ϕ′′(t) = ρϕ′(R− t).

As a result, ϕ′(R− t) = −ρϕ(t) and therefore ϕ′′+ ρ2ϕ = 0. As the latter equation is
symmetric in ρ and has no non-trivial solutions for ρ = 0 since K is injective, we may
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restrict attention to ρ > 0. The boundary conditions that ϕ satisfies are obtained
from setting t = 0 and t = R in equation (3.11) giving

ϕ(0) = ρ

(∫ R

0

ϕ(s)ds +
∫ R

0

ϕ(s)ds

)
and ϕ(R) = ρ

(∫ R

0

ϕ(s)ds

)
.(3.12)

The Dirichlet values ρD
k coincide with the square root of the eigenvalues of the

sign-changing eigenfunctions of the Dirichlet problem (meaning ϕ(0) = ϕ(R) = 0) on
the interval [0, R], so that the eigenfunctions are given by ϕD

k (t) = sin(kπt/R) and
these satisfy

∫ R

0
ϕD

k (t)dt = 0. It follows that k must be even and non-zero and the
eigenvalues satisfy ρ2 = (kπ/R)2.

The non-local values ρN
k come from setting ϕ(t) = A cos(ρt)+B sin(ρt) for A,B ∈

R and enforcing the non-local boundary conditions (3.12). This requires that the two-
by-two matrix

[
1− 2 cos(ρR) −2 sin(ρR)

cos(ρR)− ρ sin(ρR) ρ cos(ρR) + ρ + sin(ρR)

]

be singular, the determinant of this matrix being sin(ρR) − ρ(cos(ρR) + 1). The
remainder of the lemma follows because cos(ρR) + 1 must be close to zero for large
ρ > 0 so there must be an integer ` such that ρR ∼ (2` + 1)π as ρ increases.

Remark 1. Let us reiterate the eigenvalue-eigenfunction pairs

(ρN
2k+1, ϕ

N
2k+1) and (ρD

2k, ϕD
2k) ∈ R× C∞[0, R]

that are defined in Lemma 2 provide the complete eigenstructure of the operator K.
We shall use these objects routinely throughout the remainder of the article but we
shall write ρN

k rather than ρN
2k+1, invoking the tacit assumption that k is odd, or even

if we are using the Dirichlet eigenvalues ρD
k .

We continue with a definition.
Definition 2. A parameterised, nonlinear mapping of Banach spaces G : X ×

Rp → Y is said to have a bifurcation from infinity relative to Z(⊃ X) at λ∞ ∈ Rp if
there are sequences (xn) ⊂ X and (λn) ⊂ Rp such that G(xn, λn) ≡ 0 and λn → λ∞
yet ‖xn‖Z →∞ as n →∞. A bifurcation from infinity relative to X is simply called
a bifurcation from infinity.

Let us note that because the Mayer f-function is sufficiently smooth, Theorem 4
still holds if we replace the ambient function space C0[0, R] in which we seek solutions
of (3.7) with the smoother space C1[0, R] and seek solutions there; the same comment
applies to Theorem 5. However, any C1 solution of (3.7) immediately lies in C2 by
Lemma 1 and with this observation have the following lemma.

Lemma 3. Suppose (U1) holds and that exp(−u) ∈ C1[0, R]. Now write λ :=
(δ, ρ) ∈ R2 and

G(γ, λ) := −γ + ρNβ,R(γ, δ)

where G : C1[0, R] × R2 → C1[0, R]. Then G has a bifurcation from infinity relative
to W 1,p(0, R) at λ = (0, ρN

k ) for all k ≥ 1 and any p ≥ 1.
Proof. From Theorem 5 we may suppose that the following sequences exist: (ρn)

and (δn) ⊂ (0,∞) and (γn) ⊂ C1[0, R] (which in fact lies in C2[0, R] by Lemma 1)
such that

γn = ρnBR(M(γn, δn)− γn,M(γn, δn))
13



for all n where δn → 0 but ρn → ρN
k for some k ≥ 1 as n →∞.

Now suppose that ‖γn‖W 1,p is bounded. It follows that there is a γN such that
γn ⇀ γN in W 1,p(0, R) as n → ∞ and as a result we may assume that γn → γN in
C0[0, R]. Since M(γn(r), δn) → −1 in C0[0, R], there results γN = ρN

k B
R
(1 + γN , 1),

that is (−I + ρN
k K)γN + ρN

k · K 1 = 0. Hence, if ϕN
k is the eigenfunction of K

associated with eigenvalue 1/ρN
k then

0 =
〈
ϕN

k , (−I + ρN
k K)γN + ρN

k ·K 1
〉

=
〈
(I − ρN

k K)ϕN
k , γN

〉
+ ρN

k · 〈KϕN
k , 1

〉

=
〈
ϕN

k , 1
〉

=
∫ R

0

ϕN
k (s)ds 6= 0.

This is a contradiction from where ‖γn‖W 1,p cannot be bounded and the lemma
follows.

Motivated by Lemma 3, we now consider the structure of the set of solutions
of the low-temperature problem γ = ρN(γ, δ) obtained on setting δ = 0. Then
N(γ, 0) = BR(M(γ, 0) − γ, M(γ, 0)) = BR(−1 − γ,−1) = BR(1 + γ, 1) = K(1 + γ),
leading to the affine equation (3.9) that we reiterate here:

γ0 = ρKγ0 + ρK[1],(3.13)

where 1 is the function that is identically one.
Clearly, for ρ such that 1/ρ 6∈ σ(K), which includes the set R, the unique solution

of (3.13) is given by

γ0(ρ) = ρ(I − ρK)−1K[1].

Now suppose that ρn → ρN
k for some k ≥ 1 as n →∞ and that ‖γ0(ρn)‖L2 is bounded.

There then exists a subsequence of γ0(ρn), call it (γn), and a function Γ ∈ L2(0, R)
such that γn ⇀ Γ in L2 as n →∞. Clearly, the mapping N(γ, 0) = −γ+ρKγ+ρK[1]
is weakly sequentially continuous on L2(0, R) and so N(γn, 0) ⇀ N(Γ, 0), whence

Γ = ρN
k KΓ + ρN

k K[1].

But then ϕ = ρN
k Kϕ for some ϕ ∈ L2(0, T ) such that

∫ R

0
ϕ(s)ds 6= 0 and as a result

0 =
〈
ϕ,−Γ + ρN

k KΓ + ρN
k K[1]

〉
=

〈
(−I + ρN

k K)ϕ, Γ
〉

+
〈
ϕ, ρN

k K[1]
〉
,

= ρN
k 〈Kϕ, 1〉 = 〈ϕ, 1〉 =

∫ R

0

ϕ(s)ds.

This contradiction ensures that each element of the sequence (ρN
k )k≥1 is a singularity

of the function γ0(ρ) as a mapping γ0 : R → L2(0, R); this is the cause of the
bifurcations from infinity in Lemma 3.

So what of elements in the set (ρD
k )k≥2? If we define the space

XD :=
∞⊕

k=1

〈
ϕD

k

〉
,

then because K is self-adjoint and K : XD → XD, L2(0, R) = XD ⊕ X⊥
D forms

an orthogonal decomposition of L2(0, R) into K-invariant subspaces. Now, if ρ 6∈
{ρD

k }k≥1 but ρ is close to some ρD
k , then (I−ρK)−1 exists as an element of BL(X⊥

D).
Since 1 ∈ X⊥

D ,K1 ∈ X⊥
D also and we find that γ(ρ) ∈ X⊥

D ⊂ L2(0, R) and (ρD
k )k≥2 are
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removable singularities of the mapping γ0(ρ) and so we may consider γ0(ρD
k ) to be a

well-defined member of X⊥
D . This can also be seen by constructing the eigenfunction

expansion of I − ρK via eigenfunctions of K.
Finally, there is an unbounded vertical solution branch of (3.13) that exists when

ρ = ρD
k that has the form

γ = γ0(ρD
k ) + s · ϕD

k ∈ XD ⊕X⊥
D

for any value of the real parameter s ∈ R. So we define Vk =
⋃

s∈R γ0(ρD
k ) + sϕD

k for
even k ≥ 2.

Fig. 3.1. A schematic of the bifurcation diagram of (3.13): TB denotes a transcritical bifurca-
tion that persists to non-zero temperature (as measured by δ).

The purpose of the remainder of the paper is to show that Figure 3.1, the bifur-
cation diagram associated with (3.13), persists if temperature (the reciprocal of β) is
taken to be small but non-zero. So, we now give an existence result for (3.7) near the
vertical branches Vk described above, extending Theorem 5 to cover the cases whereby
ρ is contained in a neighbourhood of some point on the set {ρD

k }k≥1.
Theorem 6. Suppose that u satisfies (U1), is strictly positive and positively ho-

mogeneous, exp1(−u) ∈ C1[0, R] and that ρ0 ∈ {ρD
k }k≥2. Then there is an unbounded,

smooth two-dimensional manifold C2 ⊂ C0[0, R]×R2
+ such that each (γ, ρ, β) ∈ C2 is

a solution of the one-dimensional, truncated Ornstein-Zernike equation (3.7). More-
over, there are sequences (γn, ρn, βn)n≥1 ⊂ C2 such that ρn → ρ0 and βn → ∞ as
n →∞.

Proof. In order to solve (3.8) and hence (3.7) for small δ, let us write

γ = sϕ0 + γ0 + Γ,

where s ∈ R and γ0 is the unique function in L2(0, R) that satisfies

γ0 = ρ0Kγ0 + ρ0K[1],
∫ R

0

γ0(r)ϕ0(r)dr = 0,

where ρ0 ∈ {ρD
k }k≥2 is non-zero and

ϕ0 = ρ0Kϕ0,

∫ R

0

ϕ0(r)dr = 0,

∫ R

0

ϕ0(r)2dr = 1.

We also assume that Γ ∈ X0 where X0 = 〈ϕ0〉⊥ ∩ C0[0, R]. As a result, if we
define the projection mapping

Q : L2(0, R) → 〈ϕ0〉⊥ ; u 7→ u− ϕ

∫ R

0

u(r)ϕ0(r)dr(3.14)

15



then (3.8) becomes the system

sϕ0 + γ0 + Γ = ρN(sϕ0 + γ0 + Γ, δ)

that can be projected onto X0 and its orthogonal complement in L2(0, R) to yield the
problem

−(γ0 + Γ) + ρQ ·N(sϕ0 + γ0 + Γ, δ) = 0,(3.15)

−s + ρ

∫ R

0

ϕ0N(sϕ0 + γ0 + Γ, δ)dr = 0,(3.16)

as 〈ϕ0,Γ〉 = 0.
The system (3.15-3.16) defines a smooth map G(= G(Γ, ρ, s, δ)) : X0 × R3 →

X0 × R that satisfies

G(0, ρ0, s, 0) =
( −γ0 + ρ0QN(γ0 + sϕ0, 0)
−s + ρ0

∫ R

0
ϕ0N(sϕ0 + γ0, 0)

)

=
( −γ0 + ρ0QK[1 + γ0 + sϕ0]
−s + ρ0

∫ R

0
ϕ0K[1 + sϕ0 + γ0]dr

)

=
( −γ0 + ρ0Kγ0 + ρ0K[1]
−s +

∫ R

0
ϕ0(1 + sϕ0 + γ0)dr

)
=

(
0
0

)

for all s ∈ R using Q(K1) = K1 and Q(Kϕ0) = 0. Thus G(Γ, ρ, s, δ) = 0 has a trivial
solution branch parameterised by s; this is the set Vk.

Now, the derivative dΓ,ρG(0, ρ0, s, 0) acting on a vector [h, α] ∈ X0 × R can be
found from

dΓ,ρG(Γ, ρ, s, δ)[h, α] = ( −h + ρQdγN(γ0 + sϕ0 + Γ, δ)[h] + αQN(γ0 + sϕ0 + Γ, δ)
ρ

∫ R

0
ϕ0dγN(sϕ0 + γ0 + Γ, δ)[h]dr + α

∫ R

0
ϕ0N(sϕ0 + γ0 + Γ, δ)dr

)

and using (D3), dγN(γ0 + sϕ0, 0)[h] = B
R
(−1,−h) = K[h] so that

dΓ,ρG(0, ρ0, s, 0)[h, α] =
( −h + ρ0QKh + αQK(1 + γ0 + sϕ0)

ρ0

∫ R

0
ϕ0Khdr + α

∫ R

0
ϕ0K(1 + sϕ0 + γ0)dr

)

=
(

(−I + ρ0K)h + αK(1 + γ0)
sα/ρ0

)
.

Now, seeking a bifurcation we suppose that dΓ,ρG(0, ρ0, s, 0)[h, α] = [0, 0], then
sα/ρ0 = 0 and so α = 0 must hold if s 6= 0, so we assume the latter condition. Then
(−I + ρ0K)h = 0 and so h lies in the span of ϕ0, but the fact that h ∈ X0 yields
h = 0.

It follows that dΓ,ρG(0, ρ0, s, 0) ∈ GL(X0×R) is an injective, Fredholm mapping
and hence an isomorphism provided s 6= 0 and, as a result, the equation G(Γ, ρ, s, δ) =
0 can be solved near to any point (at which s = s0 say) on the given trivial branch
parameterised by s for two smooth functions Γ = Γ(s, δ) and ρ = ρ(s, δ), where
Γ(s0, 0) = 0 and ρ(s0, 0) = ρ0, using the implicit function theorem.

The following extension of Theorem 6 shows that equation (3.7) can possess tran-
scritical bifurcations at low temperatures that are stable to changes in temperature.

Theorem 7. Suppose that u satisfies (U1), is strictly positive and positively
homogeneous, exp1(−u) ∈ C1[0, R] and that ρ0 ∈ {ρD

k }k≥2. For each even k ∈ N
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there are two unbounded, smooth two-dimensional manifolds M1, M2 ⊂ C0[0, R]×R2
+

(depending on k) such that each (γ, ρ, β) ∈ Mi (for i = 1, 2) is a solution of (3.7).
Moreover, the set M1∩M2 is a smooth, unbounded, one-dimensional curve representing
transcritical bifurcations of (3.7).

Proof. As in Theorem 6, we seek solutions of (3.8) for small δ and again set

γ = sϕ0 + γ0 + Γ,

where s is now assumed to lie in some neighbourhood of 0 (see the penultimate
paragraph of Theorem 6 where that proof breaks down if s = 0). We again consider
equations (3.15) and (3.16) in a neighbourhood of (Γ, s, ρ, δ) = (0, 0, ρ0, 0), noting
that (3.15) can be solved in a neighbourhood of this point for a smooth function
Γ = Γ(s, ρ, δ) by the implicit function theorem where Γ(s, ρ, δ) ∈ 〈ϕ0〉⊥.

This is a Lyapunov-Schmidt procedure that reduces (3.7) to a local, smooth sys-
tem of low dimension obtained on substituting Γ = Γ(s, ρ, δ) into (3.16). The remain-
der of the proof therefore establishes the local nature of the bifurcation equation given
by (3.16) on the graph of Γ.

This results in one equation with three unknowns, viz:

−s + ρ

∫ R

0

ϕ0N(sϕ0 + γ0 + Γ(s, ρ, δ), δ)dr = 0,(3.17)

and accordingly we define the function

b(s, ρ, δ) :=
∫ R

0

ϕ0N(sϕ0 + γ0 + Γ(s, ρ, δ), δ)dr.

We shall now establish the existence of an expansion of b in the form

b(s, ρ, δ) =
s

ρ0
+ h(s, ρ− ρ0, δ),(3.18)

where h is a smooth function that vanishes at least to second order at zero.
From (3.15), using subscripts to denote derivatives with respect to the subscripted

variable, we find that

−Γs + ρQ · dγN(sϕ0 + γ0 + Γ, δ)[ϕ0 + Γs] = 0,(3.19)

and

−Γρ + ρQ · dγN(sϕ0 + γ0 + Γ, δ)[ϕ0 + Γρ] + QN(sϕ0 + γ0 + Γ, δ) = 0,(3.20)

where Q is the projection operator defined in (3.14).
We recall that upon setting δ = 0 we obtain M(γ, 0) = −1 + e−u(rδ)eγ

∣∣
δ=0

= −1,
for any γ ∈ C0[0, R] and so dγN(γ, 0) = K and d2

γγN(γ, 0) = 0 from (D1-D4). Thus,
setting (s, ρ, δ) = (0, ρ0, 0) and using a superscript 0 to denote the evaluation of a
function or operator at this point, equation (3.19) yields

−Γ0
s + ρ0Q ·K[ϕ0 + Γ0

s] = 0 =⇒ −Γ0
s + ρ0Q ·KΓ0

s = 0,

and therefore Γ0
s = 0 because Γ(s, ρ, δ) ∈ 〈ϕ0〉⊥. Also, (3.20) becomes

−Γ0
ρ + ρ0Q ·K[ϕ0 + Γ0

ρ] + QB(−1,−1− γ0) = 0,
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and using the defining properties of γ0, namely γ0/ρ0 = BR(1, 1 + γ0) = K[γ0 + 1],
we find

(−I + ρ0QK)Γ0
ρ + γ0/ρ0 = 0,(3.21)

using in both cases the fact that Q(Kϕ0) = 0. Equation (3.21) tells us that Γ0
ρ 6= 0

because γ0 ∈ 〈ϕ0〉⊥.
Now for the second derivatives. Using

−Γss + ρQ · d2
γγN(sϕ0 + γ0 + Γ, δ)[ϕ0 + Γs, ϕ0 + Γs]
+ ρQ · dγN(sϕ0 + γ0 + Γ, δ)[Γss] = 0,

we find from (D4) that the d2
γγN terms is zero and so

−Γ0
ss + ρ0Q ·K[Γ0

ss] = 0 =⇒ Γ0
ss = 0.

Also,

−Γρρ + ρQ · d2
γγN(sϕ0 + γ0 + Γ, δ)[Γρ, Γρ] + ρQ · dγN(sϕ0 + γ0 + Γ, δ)[Γρρ]

+2QdγN(sϕ0 + γ0 + Γ, δ)[Γρ] = 0,

and therefore

(−I + ρ0Q ·K)Γ0
ρρ + 2QK[Γ0

ρ] = 0,

whence Γ0
ρρ 6=0 as Γ0

ρ ∈ 〈ϕ0〉⊥ and K is injective. Now

b(0, ρ0, 0) = 〈ϕ0, B(−1,−1− γ0)〉 = 〈ϕ0,K(1 + γ0)〉 = 〈Kϕ0, 1 + γ0〉 = 0

and

bs = 〈ϕ0, dγN(sϕ0 + γ0 + Γ, δ)[ϕ0 + Γs]〉 ,

so that upon setting (s, ρ, δ) = (0, ρ0, 0)

b0
s = 〈ϕ0,Kϕ0〉 = ρ−1

0 〈ϕ0, ϕ0〉 = ρ−1
0 .

Also, because
〈
ϕ0, Γ0

ρ

〉
= 0 we have

bρ = 〈ϕ0, dγN(sϕ0 + γ0 + Γ, δ)[Γρ]〉 =⇒ b0
ρ =

〈
ϕ0,KΓ0

ρ

〉
=

〈
Kϕ0, Γ0

ρ

〉
= 0.

In order to evaluate bδ we need the derivatives of N and M with respect to δ: if
0 ≤ r ≤ R then

(M1) dδM(γ, δ) = −ru′(rδ)e−u(rδ)eγ ,
(M2) d2

γδM(γ, δ)[h, 1] = −ru′(rδ)e−u(rδ)eγ · h,
(M3) d2

δδM(γ, δ) = r2e−u(rδ)
(
u′(rδ)2 − u′′(rδ)

)
eγ ,

(M4) dδN(γ, δ) = BR(dδM,M(γ)) + BR(dδM, M(γ)− γ),
(M5) d2

δδN(γ, δ) = B
R
(d2

δδM, M(γ)) + 2B
R
(dδM, dδM) + B

R
(dδδM, M(γ)− γ),

(M6)

d2
γδN(γ, δ)[h, 1] = B

R
(dδM

′[h],M(γ)) + B
R
(dδM, M ′[h]) +

B
R
(dδM

′[h],M(γ)− γ) + B
R
(dδM, M ′[h]− h),
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where dδM
′[h] = d2

γδM(γ, δ)[h, 1]. When taking the low temperature limit δ → 0, the
exponential terms dominate in (M1) and (M2) above and we obtain

dδM(γ, 0) = 0, d2
γδM(γ, 0)[h, 1] = 0 and d2

δδM(γ, 0) = 0,

but also

d2
γδN(γ, 0)[h, 1] = 0.

As a result,

−Γδ + ρQ · dγN(sϕ0 + γ0 + Γ, δ)[Γδ] + ρQ · dδN(sϕ0 + γ0 + Γ, δ) = 0,

whence

−Γ0
δ + ρ0Q ·K[Γ0

δ ] = 0 =⇒ Γ0
δ = 0.

In addition,

−Γδδ + ρQ · dγN(sϕ0 + γ0 + Γ, δ)[Γδδ] + 2ρQ · d2
δγN(sϕ0 + γ0 + Γ, δ)[1, Γδ]

+ρQ · d2
δδN(sϕ0 + γ0 + Γ, δ) = 0,

from where Γ0
δδ + ρ0Q ·KΓ0

δδ = 0 and therefore Γ0
δδ = 0.

Similarly,

bδ = 〈ϕ0, dγN(sϕ0 + γ0 + Γ, δ)[Γδ] + dδN(sϕ0 + γ0 + Γ, δ)〉 ,
and so, on setting δ = 0 we obtain

b0
δ = 〈ϕ0,K[Γδ]〉 = 〈Kϕ0, Γδ〉 = 0.

Continuing in the same vein using properties (D1-D4) established previously, we ob-
tain

b0
ss =

〈
ϕ0, d

2
γγN(γ0, 0)[ϕ0 + Γ0

s, ϕ0 + Γ0
s] + dγN(γ0, 0)[Γ0

ss]
〉

= 0,

b0
ρρ =

〈
ϕ0, d

2
γγN(γ0, 0)[Γ0

ρ, Γ
0
ρ] + dγN(γ0, 0)[Γ0

ρρ]
〉

=
〈
ϕ0, KΓ0

ρρ

〉

= 0,

b0
δδ =

〈
ϕ0, d

2
δδN(γ0, 0) + d2

γγN(γ0, 0)[Γ0
δ ,Γ

0
δ ] + dγN(γ0, 0)[Γ0

δ ]
〉

+
〈
ϕ0, 2dγδN(γ0, 0)[Γ0

δ , 1]
〉

= 0.

This establishes the validity of (3.18) for b up to terms of second order and
therefore the bifurcation equation for (3.8) near (Γ, s, ρ, δ) = (0, 0, ρ0, 0) is given by
−s + ρ · b(s, ρ− ρ0, δ) = 0, or

(ρ− ρ0) · s + ρρ0h(s, ρ− ρ0, s) = 0.(3.22)

If we introduce a desingularising set of coordinates (t, σ0, ∆) in (3.22) given by

ρ− ρ0 = t, s = σ0t, δ = ∆t,

equation (3.22) then yields

σ0 = ρ0(ρ0 + t) · t−2h(σ0t, t, ∆t)
19



and as h only contains terms of order three and higher this is a smooth equation
that can be solved near (t, σ0, ∆) = (0, 0, 0) by the implicit function theorem for
σ0 = σ0(t,∆). The graph of σ0 gives the manifold M1 in the statement of the theorem.

If we introduce a different set of coordinates (t, σ1, ∆) in (3.22) now given by

ρ− ρ0 = σ1t, s = t, δ = ∆t,

equation (3.22) becomes

σ1 = ρ0(ρ0 + σ1t) · t−2h(t, σ1t, ∆t).(3.23)

Equation (3.23) is also a smooth equation that can be solved near (t, σ1, ∆) = (0, 0, 0)
by the implicit function theorem for σ1 = σ1(t, ∆) and the graph of σ1 gives the
manifold M2 in the statement of the theorem.

If (ρ, s, δ) ∈ M1 ∩M2 then there are parameter values t and t′ such that

(ρ, s, δ) = (ρ0 + t, tσ0(t,∆), t∆) = (ρ0 + t′σ1(t′, ∆′), t′, t′∆′),

so that

t = t′σ1(t′, ∆′), t′ = tσ0(t,∆), t′∆′ = t∆.

Hence t∆ = tσ0(t,∆)∆′ and so we may desingularise the problem by dividing through
by t provided t 6= 0, we thus obtain a system of equations that describes M1 ∩ M2

locally:

t = t′σ1(t′,∆′),(3.24)
t′ = tσ0(t,∆),(3.25)
∆ = ∆′σ0(t,∆).(3.26)

The system of equations (3.24-3.26) can be solved for (t, t′, ∆) as a function of ∆′

near to the solution (t, t′,∆, ∆′) = (0, 0, 0, 0) using the implicit function theorem and
the existence of a smooth curve in M1 ∩M2 is established.

4. Discussion. The purpose of this article is to locate regions in the (ρ, β)-
plane containing solutions and bifurcations of the Ornstein-Zernike equation with no
intrinsic physical meaning. This is motivated by recent computations that are depicted
in Figure 1.1(right) (obtained using the numerical approach of [2]) which demonstrate
that the three-dimensional problem has more than the expected two solution branches.
In a sense, this article is analogous to [10] which tackles the problem of finding unique
minimisers for a variational problem from density functional theory.

The rationale that we have used in this paper can be described as follows. Using
the fact that e−βu(r) converges in the zero-temperature limit β → ∞ to the zero
function, provided that u is strictly positive, the singularity of the potential at r = 0
allows us to collapse (3.7) to an affine equation that has spectral parameter ρ. If u
is homogeneous of degree −α then e−βu(r) = e−u(δr) holds for all r ≥ 0, as seen by
making the substitution β = δ−α. One may now use δ as the bifurcation parameter
because the resulting problem, where δ is a bifurcation parameter and not β, is smooth
as a function of δ near δ = 0. In order to demonstrate that this procedure yields
physically relevant solutions, one would have to study how the solution branches
behave as β is reduced using global bifurcation theory; undoubtedly this is a very
difficult problem.
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The results in this paper extend in several directions. For example, consider an
abstract formulation of (2.1):

γ = ρB(Mδ(γ)− γ, Mδ(γ)),(4.1)

on a space X that is a Banach algebra under multiplication with unit element 1 ∈ X.
If

(1) B is a symmetric bilinear form on X,
(2) M is a smooth family of Nemitskii operators on X such that M0(γ) ≡ −1 and
(3) K[·] := B(1, ·),

then upon setting δ = 0, (4.1) reduces to

γ = ρKγ + ρB(1, 1).(4.2)

One can study (4.2) and its perturbation (4.1) using the same methods in this article.
For example, in the case whereby convolution over the two or three-dimensional

ball BR(0) is used for the convolution operator that defines B in (4.1), K becomes
the operator

(Ku)(x) =
∫

‖x−y‖<R

u(‖x− y‖)dy.

If X is spanned by finitely many basis functions and B is a projection of the convo-
lution of, say, continuous functions onto this span, then (4.1) corresponds to a finite
element dicretisation of (2.1). If Mδ(γ) = −1+e−u(rδ)(−1+γ) and B is a convolution
operator, then (4.1) is the Ornstein-Zernike equation with Percus-Yevick closure, as
defined in [6]. In all of these cases, many of the results of this paper carry through
with the necessary modifications.

Thanks. Many thanks are due to Fernando Bresme, Andrew Parry and Jim
Henderson for all their help given during the course of this work.
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