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In this paper we study an SI model of infectious diseases which takes into account
spatial inhomogeneities, resulting in a system of reaction-convection-diffusion equa-
tions on a bounded domain. The convection process is included to account for social
interaction, as modelled by the location of a focal point or den where the population
will tend to aggregate.

We show that a vertical bifurcation of steady-state solutions occurs in this model
when birth rate is taken as the bifurcation parameter, from which emanates a global
secondary branch which then bifurcates at infinity. We subsequently use singular
perturbation techniques to give a description of the limiting spatial structure along
this branch in large and small parameter limits. Finally, the results are illustrated
numerically on some biologically relevant cases.
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1. Introduction

Understanding animal movement is an important factor in understanding their so-
cial behaviour which is particularly relevant in the context of epidemiology and
disease management (Rogers et al. 1998). The difficulty in observing infected in-
dividuals and the consequent lack of empirical data has led to the development
of models in which the behaviour of healthy individuals is used to study disease
dynamics (White et al. 1995b). Nevertheless, there have been attempts to observe
and quantify the behaviour of infected animals (Cheeseman and Mallison 1981,
Kaplan 1977, Bacon 1985, Artois & Aubert 1985) and there has emerged evidence
from such studies that infected individuals may display significantly different be-
haviour from that of healthy individuals (Jeltsch et al. 1997 and White et al. 1995a).
These studies have also found a high variation of behaviour among infected indi-
viduals themselves, ranging from the so-called dumb (or paralysis) forms of disease
for which individuals have very restrictive movement, to the furious forms whereby
individuals move in a random fashion, possibly covering great distances.

In this paper we consider disease dynamics in a single social group of animals.
The members of that social group are divided into two classes: susceptibles S and
infecteds I. Infecteds have the disease and can transmit it and we assume that
once infected, individuals do not recover. When modelling social structure we take
White et al. (1995a) as a basis and assume that animal movement comprises of
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two components: (convective) movement towards the den to feed the offspring, for
instance, and (diffusive) dispersal in order to find food and protect the group.

Let Ω = (0, 1) ⊂ R and for each T > 0 we define DT = (0, T ] × Ω. The
result to follow can all be extended to cover the case Ω ⊂ Rd, modulo suitable
regularity requirements, but to maintain clarity of the presentation we restrict to a
one-dimensional spatial domain.

We now take a well-known ODE model and include inhomogeneous diffusive and
convective terms to represent the presence of a focal point, providing the following
parabolic problem:

St = (D1(x)Sx + C1(x)S)x + (a− b)S + aI − λSI, (t, x) ∈ DT ,

It = (D2(x)Ix + C2(x)I)x − cI + λSI, (t, x) ∈ DT ,
(1.1)

subject to the no-flux boundary conditions

0 = D1(x)Sx + C1(x) = D2(x)Ix + C2(x)I, (t, x) ∈ (0, T ]× ∂Ω. (1.2)

We assume throughout that positive and continuous initial data S(x, 0) = S0(x)
and I(x, 0) = I0(x) are given.

Movement towards the den is modelled by convection towards a single point
in the domain, xD ∈ Ω. Various forms for this movement have been discussed in
Okubo (1980) but here, with generality in mind, the convection coefficients Ci(x)
are assumed to be continuously differentiable functions satisfying

Ci(0) < 0 and Ci(1) > 0, (i = 1, 2).

This condition is required in order to obtain maximum and comparison prin-
ciples for the system (1.1-1.2). The diffusion coefficients, Di(x), are continuously
differentiable and strictly positive on Ω. The parameter λ represents the contact
rate between susceptible and infected individuals and c represents the per-capita,
disease-induced death rate. Also, a represents the per-capita birth rate of both sus-
ceptible and infected individuals and b represents the per-capita natural death rate
of the susceptible individuals. We assume no vertical transmission, that is infected
individuals give birth to susceptible individuals; this has been observed in badgers
infected with tuberculosis (Bentil & Murray 1993, Anderson & May 1985) and foxes
infected with rabies (Bacon 1985). Note that all of the above reaction parameters
are positive constants.

This model is presented in ODE form in Anderson and May (1981, p.462),
where the parameters have a slightly different meaning to those presented here.
The reaction terms in (1.1) form part of an ODE model of social interaction which
is discussed in Beardmore & White (2001).

Throughout the paper we shall use the eigenfunctions

φi(x) = exp
(
−

∫ x

0

Ci(ξ)
Di(ξ)

dξ

)
, (i = 1, 2),

and these functions satisfy

Di(x)
dφi(x)

dx
+ Ci(x)φi(x) ≡ 0, x ∈ Ω.
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Due to the assumption that the convection functions have zeros, it is typical that
each φi is a unimodal function, or multi-modal if more zeros of Ci are assumed.

Seeking steady state solutions of (1.1-1.2), we are required to solve the boundary-
value problem

−L1S := −(D1(x)Sx + C1(x)S)x = (a− b)S − λSI + aI, x ∈ Ω,

−L2I := −(D2(x)Ix + C2(x)I)x = λSI − cI, x ∈ Ω,
(1.3)

subject to

D1(x)Sx + C1(x)S = D2(x)Ix + C2(x)I = 0, x ∈ ∂Ω. (1.4)

When a = b, we see that (1.3) has a vertical branch of solutions of the form

(S, I) = (kφ1(x), 0), (1.5)

where k is an arbitrary, non-negative constant. Note that this vertical branch bi-
furcates from the trivial solution branch of (1.3). Taking the birth rate, a, to be the
bifurcation parameter, we seek non-negative solutions of (1.3) for a > 0 and we are
led to consider the following three cases:

I. 0 < a < b < c, II. 0 < b < c < a, III. 0 < b < a < c.

As a preliminary step, let us consider the ODE

Ṡ = (a− b)S + aI − λSI,

İ = −cI + λSI.
(1.6)

This corresponds to the spatially homogeneous solutions of (1.1-1.2) in the case of
zero convection. One can readily show that the dynamics of (1.6) are as described
in Figure 1. In case III the steady-state of (1.6) when a > b is given by

(S, I) =
c

λ

(
1,

a− b

c− a

)
,

and we shall demonstrate that a similar form holds for the steady-states of (1.1-1.2).
We note that this branch of steady-states bifurcates as a secondary branch from a
vertical set of solutions which exists when a = b.

(a) Case I

Here we assume that the birth rate parameter is smaller than the natural death
rate, which in turn is less than the disease induced mortality rate. In anticipation of
Proposition (1.1), we suppose that (1.1-1.2) admits solutions with positive (S0, I0) ∈
C0(Ω)× C0(Ω). Let us define the total biomass function, V :

V (S, I) :=
∫

Ω

(S + I)dx.

Using (1.1-1.2) we find

dV

dt
= (a− b)

∫

Ω

Sdx + (a− c)
∫

Ω

Idx ≤ max(a− b, a− c)V,
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Figure 1. Three cases: I (left), II (right) and III (middle).

since a < b < c. If δ = max(a−b, a−c), it follows that V (S(t), I(t)) ≤ eδtV (S0, I0),
so that ‖S‖L1 + ‖I‖L1 → 0 as t →∞.

This shows that when the birth rate of the total population is smaller than both
the natural and disease induced death rates, the population will become extinct.

(b) Case II

In this section we consider (1.1-1.2) when 0 < b < c < a and for x ∈ Ω. Since
φi is continuous on the compact set Ω, there exist φi max,φi min ∈ R such that

0 < φi min ≤ φi(x) ≤ φi max, x ∈ Ω,

and for brevity of the notation, we set

r =
φ1 min

φ1 max
≤ 1. (1.7)

Proposition 1.1. Suppose 0 < b < c < a and c
a < r. Given continuous initial data

(S0, I0) such that S0 > 0 and

I0 ≥ (a− c) + (a− b)
λφ2 min

exp
(

a

(a− c) + (a− b)

)
φ2, (1.8)

there is a unique solution (S, I) of (1.1-1.2) with this initial data which also satisfies

‖(S(x, t), I(x, t))‖C0 →∞,

as t →∞. Moreover S stays C0-bounded while ‖I‖C0 →∞ as t →∞.

Proof. Since the disease-dynamics terms in (1.1) do not form a quasi-monotone
function, in order to prove the proposition we construct a pair of generalised upper
and lower solutions of (1.1-1.2) according to Pao (1992, definition 9.1, p.436). Con-
ditions for (S, I) and (S, I) to be a pair of generalised upper and lower solutions of
(1.1-1.2) as set out in Pao (1992) yield

∂S

∂t
−D1(x)

∂2S

∂x2
− (D′

1(x) + C1(x))
∂S

∂x
≥

C ′1(x)S + (a− b)S − λSI + aI, (1.9a)
∂S

∂t
−D1

∂2S

∂x2
− (D′

1(x) + C1(x))
∂S

∂x
≤

C ′1(x)S + (a− b)S − λSI + aI, (1.9b)
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for all continuous functions I on DT such that I ≤ I ≤ I, together with

∂I

∂t
−D2

∂2I

∂x2
− (D′

2(x) + C2(x))
∂I

∂x
≥ C ′2(x)I + λSI − cI, (1.10a)

∂I

∂t
−D2

∂2I

∂x2
− (D′

2(x) + C2(x))
∂I

∂x
≤ C ′2(x)I + λSI − cI, (1.10b)

for all continuous functions S on DT such that S ≤ S ≤ S.
Let β, γ, N1, N2 and k be positive constants satisfying N1 > N2 and

N2 ≥ (a− c) + (a− b)
λφ2 min

, (1.11)

β ≤ λN2φ2 min, (1.12)

γ ≥ a
1
r

+
λ

k
φ1 max − c, (1.13)

k ≤ λφ1 min

a(a− b)
(λN2φ2 min − (a− c)− (a− b)). (1.14)

Then the pair (S, I) := (p1(t)φ1, q1(t)φ2) and (S, I) := (p2(t)φ1, q2(t)φ2), where
g(t) = (ar − c)t + a

β e−βt and

p1(t) = a
λφ1 min

+ 1
k exp(−g(t)), p2(t) = a

λφ1 max
(1− exp(−βt)),

q1(t) = N1 exp(γt), q2(t) = N2 exp(g(t)),
(1.15)

provides a pair of generalised upper and lower solutions of (1.1-1.2). Since (Di(x)φix+
Ci(x)φi)x = 0 for i = 1, 2, the necessary boundary inequalities defined in Pao (1992)
are satisfied. Condition (1.9a) holds provided

−ġ(t)
1
k

e−g(t)φ1 ≥ (a−b)
(

a

λφ1 min
+

1
k

e−g(t)

)
φ1−λ

(
a

λφ1 min
+

1
k

e−g(t)

)
φ1I+aI,

for all C0 functions I with I ≤ I ≤ I. This is true if

−ġ(t) ≥ k(a− b)
a

λφ1 min
eg(t) − λI + (a− b),

This is true for all x ∈ Ω and t ∈ (0,∞) provided (1.11) and (1.14) hold. Condition
(1.10a) holds provided γ + c ≥ λS, for all C0 functions S with S ≤ S ≤ S. This
inequality is satisfied for all x ∈ Ω and t ∈ (0,∞) if (1.13) holds.

Condition (1.9b) holds if

β
a

λφ1 max
e−βtφ1 ≤ (a− b)

a

λφ1 max
(1− e−βt)φ1 − λ

a

λφ1 max
(1− e−βt)φ1I + aI,

all C0 functions I with I ≤ I ≤ I, which, in turn, is satisfied if

β
a

λφ1 max
e−βt ≤ (a− b)

a

λφ1 max
(1− e−βt) +

a

φ1 max
e−βtI.

This inequality holds provided β ≤ (a− b)eβt − (a− b) + λN2e
g(t)φ2, which is true

if (1.12) holds.
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Finally, condition (1.10b) is satisfied if ġ(t) ≤ λS − c, for all C0 functions S
with S ≤ S ≤ S. The latter inequality holds in turn provided

ar − c− ae−βt ≤ a
φ1

φ1 max
− c− a

φ1

φ1 max
e−βt,

which is true for all x ∈ Ω and t ∈ (0,∞).
Hence applying the existence–comparison theorem, see Pao (1992, theorem 9.2,

p. 436), for continuous initial data (S0, I0) such that S0 > 0 and (1.8) holds, given
suitable positive constants β, γ, N1, N2 and k so that

(0, N2 exp(
a

β
)) ≤ (S0, I0) ≤

(
a

λ
+

a

βk
φ1, N1φ2

)
,

equation (1.1-1.2) has a unique solution (S(x, t), I(x, t)) ∈ C0(DT ) × C0(DT )
provided N1 > N2 and (1.11-1.14) hold. The result now follows since p1(t) →
a/(λφ1 min), p2(t) → a/(λφ1 max) and q1(t), q2(t) →∞ as t →∞.

According to proposition 1.1, in the case where the birth rate is larger than both
natural and disease induced death rates, the total population will become arbitrarily
large. However, the number of susceptibles stays bounded while the infection level
grows without bound.

Since the terms representing disease-dynamics in (1.1) do not form a quasi-
monotone function, in order to prove proposition 1.1 we have constructed a pair
of generalised upper and lower solutions. The spatially homogeneous extensions of
the solutions of the corresponding ODE (equation (1.6)) cannot be used in order to
form a comparison function pair for (1.1) as the necessary boundary inequalities as
set out in (Pao, 1992) are not satisfied by such a function. Additionally, proposition
1.1 requires the initial data (S0, I0) to be sufficiently large, in a suitable sense, and
therefore this result does not cover the cases where either S0 or I0 has support
which is a proper subset of Ω.

It is also worth commenting that the proposition provides the existence of solu-
tions only for continuous initial data, whereas a simple argument using semigroup
theory (Henry, 1981) shows that solutions exist with initial data in L2(Ω)×L2(Ω).

2. Case III: A Bifurcation Problem

In the final case, we assume that the birth rate is greater than the natural death
rate, but less than the disease induced mortality rate, that is b < a < c. In order
to simplify some of the following, we introduce a change of variables and define
functions u and v by

S = uφ1 and I = vφ2,

where φi is defined above. After this transformation, (1.4) is seen to be equivalent
to the following Neumann boundary value problem

−L1u = (a− b)uφ1 − λuvφ1φ2 + avφ2, x ∈ Ω,

−L2v = λuvφ1φ2 − cvφ2, x ∈ Ω,

0 = ux = vx, x ∈ ∂Ω,

(2.1)
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where Li : C2(Ω) → C0(Ω) are the continuous, linear operators defined by

Liu := (Di(x)φiux)x, (i = 1, 2). (2.2)

Since φi(x) ≥ φi min > 0 it is clear that each Li is uniformly elliptic, it is also self-
dual with respect to the usual L2 dual-pairing between C0(Ω) and C2(Ω) as defined
in Zeidler (1995). Moreover, each mapping is Fredholm of index 0, so that each has
a null-space of finite dimension, d say, and a closed range whose codimension equals
d.

Remark 1. Throughout the following we shall define the continuous linear operator
L : C2

0 (Ω) → C0(Ω) by
Lv = L2v − cφ2v.

Let us note that if c 6∈ σ(L2) then L has a continuous inverse L−1 : C0(Ω) → C2
0 (Ω)

(the latter space incorporating the Neumann boundary conditions).
We also remark that if α is an eigenvalue of the operator L2 then α ≤ 0. To

see this, consider L2I = αI and set I = vφ2, now test the resulting equation
αvφ2 = (D2vxφ2)x with v to give

α

∫

Ω

φ2v
2dx = −

∫

Ω

D2φ2v
2
xdx.

In this section we demonstrate the existence of non–negative solutions of (2.1)
for b < a < c, by seeking secondary bifurcations from the line of solutions (u, v) =
(k, 0), where k is any constant. First we define the following spaces

X := {u ∈ C2(Ω) : ux = 0 on ∂Ω}, Y := C0(Ω),

and
Z := {u ∈ L2(Ω) :

∫

Ω

u(x)dx = 0} = 〈1〉⊥ .

We shall also make use of the Banach spaces XZ := X ∩Z and YZ := Y ∩Z, noting
that we may decompose each u ∈ X into its L2-orthogonal parts:

u = k + û ∈ 〈1〉 ⊕XZ ,

where k ∈ R. Here, we identify R with the space of constant functions which we
denote by 〈1〉. In what follows, we shall also set

a = b + µ,

where µ ∈ R. Let us now define the restricted operators

L̂i := Li|XZ : XZ → YZ , i = 1, 2, (2.3)

which are isomorphisms, with bounded linear inverses L̂−1
i : YZ → XZ .

Solving (2.1) is then equivalent to the following bifurcation problem, with (µ, û, v, k) ∈
R×XZ ×X × R:

−L̂1û = µ(k + û)φ1 − λ(k + û)vφ1φ2 + (b + µ)vφ2, x ∈ Ω,

−L2v = λ(k + û)vφ1φ2 − cvφ2, x ∈ Ω,

0 = ux = vx, x ∈ ∂Ω,

(2.4)
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where k ∈ R is now the bifurcation parameter. We also define bounded, linear
projections P : L2 → Z and Q : L2 → R (∼= 〈1〉) by

P [n] = n−
∫

Ω

ndx and Q[n] =
∫

Ω

ndx.

Using these projection mappings, the system (2.4) is then equivalent to

0 = µQ[(k + û)φ1]− λQ[(k + û)φ1vφ2] + (b + µ)Q[vφ2], x ∈ Ω,

−L̂1û = µP [(k + û)φ1]− λP [(k + û)φ1vφ2] + (b + µ)P [vφ2], x ∈ Ω,

−L2v = λ(k + û)φ1vφ2 − cvφ2, x ∈ Ω,

0 = ûx = vx, x ∈ ∂Ω,
(2.5)

which we can write as an analytic map of Banach spaces F : R ×XZ ×X × R →
R× YZ × Y , and we denote this

F (w, k) = 0, (2.6)

with w = (µ, û, v), where F is given by

F (w, k) =




µQ[(k + û)φ1]− λQ[(k + û)φ1vφ2] + (b + µ)Q[vφ2]
L̂1û + µP [(k + û)φ1]− λP [(k + û)φ1vφ2] + (b + µ)P [vφ2]

L2v + λ(k + û)φ1vφ2 − cvφ2


 .

(2.7)
In order to prove the existence of local bifurcation from the vertical branch of

solutions to (2.5) at a = b, we shall need the following preliminary lemma on the
existence of eigenfunctions for an indefinite elliptic eigenproblem.

Lemma 2.1. Let Φ, Ψ ∈ C1(Ω) be strictly positive functions on Ω and let L :
C2(Ω) → C0(Ω) be the operator Lu = (Φ(x)ux)x where Neumann boundary con-
ditions apply on ∂Ω. Now, let c, λ > 0 and consider the principal Neumann eigen-
problem

−Lw = Φw(λkΨ− c),
∫

Ω

w2 = 1, w > 0, (2.8)

where k is the eigenvalue. Then for each c, λ > 0 there is a unique positive value of
k, k = k∗, and a unique positive eigenfunction, w = w∗, which satisfies (2.8).

Proof. We shall use a proof similar to one used in Affrouzi & Brown (1999). Consider
the augmented principle eigenvalue problem

−Lw − Φw(λkΨ− c) = µw,

∫

Ω

w2 = 1, w > 0. (2.9)

It is clear that if µ = µλ,c(k) = 0 then we have a solution of (2.8). However, there
is the variational characterisation of µ:

µ(k) = inf
{∫

Φw2
x − Φ(λkΨ− c)w2dx : w ∈ H1(Ω),

∫

Ω

w2dx = 1
}

.

For each fixed w ∈ H1(Ω), it follows that

µ(k) ≤
∫

Φw2
x − λk

∫
ΦΨw2 + c

∫
Φw2dx, (2.10)
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and therefore limk→+∞ µ(k) = −∞ as ΦΨ > 0. However, since k 7→ ∫
Φw2

x −
Φ(λkΨ − c)w2dx is affine and the infimum over an affine family of functions is a
concave function, we see that µ(k) is concave and therefore continuous. However, it
is clear that µ(0) ≥ 0 and µ(0) = 0 cannot occur because c > 0, whence µ(0) > 0.
The intermediate value theorem thus provides the solution k∗ and the uniqueness
is a consequence of the concavity of µ.

From this lemma it follows that for each positive c and λ the indefinite-weight
eigenproblem

−L2v = vφ2(λkφ1 − c), (2.11)

(where k is the eigenvalue and φ2(λkφ1 − c) is the weight) has a unique positive
eigenfunction v = ν∗ with eigenvalue k = k∗. This will allow us to demonstrate
that the nonlinear elliptic problem (1.3) has a unique branch of positive solutions
bifurcating from the vertical solution branch which exists a = b. This is essentially
done in the following result which shows that there is a solution of (2.5) bifurcating
from the line of trivial solutions (µ, û, v, k) = (0, 0, 0, k).

Theorem 2.2. There exists a neighbourhood N ⊂ R containing 0 and analytic
functions

û : N → XZ , v : N → X and k : N → R

with û(0) = 0, v(0) = 0, k(0) = k∗ which is an analytically parameterised branch
of non-trivial solutions of (2.5), bifurcating from (û, v, µ, k) = (0, 0, 0, k∗). Each
element (µ, û(µ), v(µ), k(µ)) on this branch corresponds to a non-trivial, positive
solution (a− b, u, v) = (µ, k(µ) + û(µ), v(µ)) ∈ R+ ×X+ ×X+ of (2.1).

Proof. It is clear that (µ, û, v) = (0, 0, 0) is a solution of (2.5). Linearising (2.5)
around w = (µ, û, v) = (0, 0, 0) and seeking a simple null–space of the linearised
problem, we seek a non-trivial solution to the linear equation

dwF ((0, 0, 0), k)(h1, h2, h3)T = (0, 0, 0)T ,

with (h1, h2, h3) ∈ R×XZ ×X. Writing this in full, we need to find a non–trivial
solution of

0 = h1kQ[φ1]− λkQ[φ1h3φ2] + bQ[h3φ2], (2.12)
−L̂1h2 = h1kP [φ1]− λkP [φ1h3φ2] + bP [h3φ2], (2.13)
−L2h3 = h3(λkφ1φ2 − cφ2). (2.14)

Applying lemma 2.1 to (2.14), it follows that there exists a non-zero solution, h3,
to (2.14) when k = k∗ from lemma 2.1.

Integrating (2.14) we obtain λk∗
∫
Ω

φ1φ2h3dx = c
∫
Ω

h3φ2dx, which we use in
(2.12) in order to obtain h1 = (c − b)Q[h3φ2]/(k∗Q[φ1]). Finally, substituting the
values of h1, h3 and k∗ into (2.13) there remains to solve the linear equation

−L̂1h2 = f(x) (2.15)

for h2, where f(x) = P [h1k
∗φ1 − λk∗φ1h3φ2 + bh3φ2]. Since f(x) ∈ YZ and L̂1 :

XZ → YZ is an isomorphism, there is a non–trivial solution, h2 ∈ XZ , to (2.15).
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We have thus shown that dwF ((0, 0, 0), k∗) has a one dimensional null space,

N(dwF ((0, 0, 0), k∗) =
〈
(h1, h2, h3)T

〉
,

and to conclude the proof we apply the bifurcation from a simple eigenvalue theorem
(Ambrosetti & Prodi 1995). Hence, there remains to show that

d2
k,wF ((0, 0, 0), k∗)(h1, h2, h3)T /∈ R(dwF ((0, 0, 0), k∗)). (2.16)

Suppose, seeking a contradiction, that there exists a (µ, û, v) ∈ R ×XZ ×X such
that

dwF ((0, 0, 0), k∗)(µ, û, v)T = d2
k,wF ((0, 0, 0), k∗)(h1, h2, h3)T ,

which is the system

Q[(λk∗φ1 − b)φ2v]− µk∗Q[φ1] = Q[λφ1φ2h3 − h1φ1],
L̂1û + P [(λk∗φ1 − b)φ2v]− µk∗P [φ1] = P [λφ1φ2h3 − h1φ1],

L2v − (λk∗φ1 − c)φ2v = −λφ1φ2h3. (2.17)

Since the operator L2 : X → Y is self dual with respect to the usual L2-dual pairing
of X and Y , for v ∈ X to be a solution of (2.17) we require

−λ

∫

Ω

φ1φ2h
2
3dx =

∫

Ω

(L2v − (λk∗φ1 − c)φ2v)h3dx

=
∫

Ω

v(L2h3 − (λk∗φ1 − c)φ2h3)dx = 0

by definition of h3. Since h2
3φ1φ2 > 0 on Ω we have a contradiction and the result

follows.

We now state the main result of this section.

Theorem 2.3. Fix c and b with c > b > 0 and λ > 0, then there is an η ∈ (0, c−b)
and analytic functions S : (b, b + η) → C2 and I : (b, b + η) → C2 such that
(S(a), I(a)) is a positive solution of (1.3) for each a ∈ (b, b + η). Moreover, taking
convergence in the C2 sense there results

S(a) → k∗φ1 and I(a) → 0

as a ↘ b where k∗ is an eigenvalue of the eigenproblem (2.11).

(a) Global analytic bifurcation

In this section we show that the local bifurcation obtained above gives rise to a
global bifurcation and there a several approaches that one could employ. In Stuart
(1985) and Davidson (1999) the authors use nodal properties of solutions to show
that the linearisation operator, which in our case is dwF (w, k), is a bijection for
all w and k. If we were able to prove hyperbolicity of dwF (w, k) for each w and
k, then the existence of a locally stable, global branch of solutions would follow.

Article submitted to Royal Society



A Spatial SI Model 11

Despite strong numerical evidence that the non-trivial branch of solutions of (1.3)
is stable for all a ∈ (b, c), we have been unable to prove this.

One should like to apply the global results given in Kielhöfer (1984), which is an
extension of the results of Krasnoselskii (1964) and Crandall & Rabinowitz (1971),
in order to obtain the global existence of non-trivial equilibria. In this reference
the author proves the existence of global solution branches in bifurcation problems
based on the topological degree for C2 proper mappings of Fredholm index zero,
which includes an arbitrary dependence of the nonlinearity on the parameter; this
is not a feature of the work of Crandall et al. However, because the formulation of
our bifurcation problem (2.5) is somewhat cumbersome and because it is not clear
that the results of Kielhöfer (1984) are applicable (because F must be a proper
mapping according to Theorem 4.5 of Kielhöfer (1984) and this property is not an
obvious one), a cleaner approach to the problem at hand is to use the theory of
global bifurcation for analytic mappings developed in Dancer (1973) and Buffoni et
al. (2001).

Lemma 2.4. If λ > 0, c > b > 0 then (1.3-1.4) has solutions with I(x) > 0 for
all x ∈ Ω only for a ∈ (b, c). If a ∈ (b, c) and (S, I) is a solution of (1.3-1.4) with
I > 0 then

‖S‖L∞ ≥ c

λ
.

If a = b then non-negative solutions to (1.3) have the form (S, I) = (kφ1, 0) for any
k ≥ 0.

Proof. Integrate the first equation in (1.3) over Ω to give (a−b)
∫

S+(a−c)
∫

I = 0
and the first and last parts follow. Integrating the second equation in (1.3) yields
c
∫

Idx = λ
∫

SIdx ≤ λ‖S‖L∞
∫

Idx.

We now define Z = R×XZ ×X and the open set U ⊂ Z × R by

U = {(w, k) = (û, v, µ, k) ∈ Z × R : v > 0, ‖φ1(k + û)‖C0 > c/(2λ), 0 < µ < c− b} ,
(2.18)

Σ = {(w, k) ∈ U : F (w, k) = 0} and ΣR = {(w, k) ∈ U : F (w, k) = 0, dwF (w, k) ∈
Iso(X, Y )}. Moreover, let C be the maximal, connected subset of Σ which contains
the point (w, k) = (0, k∗) := (0, 0, 0, k∗) ∈ Z × R in its closure (in Z × R, noting
that (0, k∗) 6∈ U).

We continue with the following preparatory lemma.

Lemma 2.5. Suppose that c > b > 0 then the following hold.

1. The mapping F : R×XZ ×X ×R→ R×YZ ×Y is an analytic mapping and
dwF (w, k) ∈ BL(X, Y ) is Fredholm of index 0 for each (w, k).

2. The set ΣR contains a maximal, analytically parameterised curve of solutions
A such that A contains the point (w, k) = (0, k∗) 6∈ U .

3. Any bounded set in Σ has compact closure (in Z × R).

4. Suppose that (wn, kn) ⊂ ΣR ∩ U is some convergent sequence such that
(wn, kn) → (w′, k′) 6∈ U and supn(‖wn‖C0 + |kn|) < ∞, then (w′, k′) =
(0, k∗).
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Proof. For the first part it suffices to show (see, for instance, Taylor (1996)) that the
linearisation dwF (w, k) is a compact perturbation of a Fredholm mapping of index
0. To this end, we remark that one can write the given derivative as a multiplicative,
and therefore compact perturbation of the operator matrix

−



0 0 0
0 L̂1 0
0 0 L2


 ∈ BL(R×XZ ×X,R× YZ × Y ).

Since this is Fredholm of index 0 the first part follows.
From theorem 2.3, it follows that ΣR contains a (locally) analytically parame-

terised curve of solutions, A say. Now define A to be the maximal path-connected
subset of ΣR which contains A.

The third part follows from the continuity of the inverse mappings

(L̂1)−1 ∈ BL(YZ , XZ) and L−1 ∈ BL(Y,X),

where, we recall, Lv = L2v − cφ2v and the compactness of the embeddings XZ ↪→
YZ , X ↪→ Y .

To prove the final part, suppose that (wn, kn) = (ûn, vn, µn, kn) → (û′, v′, µ′, k′).
Since 0 < µn < c−b then 0 ≤ µ′ ≤ c−b. If µ′ = c−b then lemma 2.4 is contradicted
and if v′ is non-positive then the maximum principle is violated, so suppose that
0 < µ′ < c − b. Since ‖φ1(kn + ûn)‖C0 ≥ c/λ from lemma 2.4, it follows that
‖φ1(k′ + û′)‖C0 ≥ c/λ > c/(2λ) which contradicts the fact that the limit of this
sequence is not in U . It follows that we must have µ′ = 0, whence S′ = φ1(k′ + û′)
and I ′ = φ2v

′ provides a solution of (1.3) with a = b. From lemma 2.4 we must have
v′ = 0 and S′ = k′φ1 where k′ is to be determined, so that û′ = 0 and therefore k′ is
a bifurcation point from the trivial branch of solutions to (2.6) into U . However, a
necessary condition for this to hold is that dwF (0, k′) ∈ BL(R×XZ×R,R×YZ×Y )
has a zero eigenvalue. This in turn implies that (2.14), that is (2.11), has a non-
negative eigenfunction at k = k′. Since k = k∗ is the unique eigenvalue of (2.11)
corresponding to a non-negative eigenfunction, it follows that k′ = k∗.

From Buffoni et al. (2001) we obtain the following information.

Theorem 2.6. The set C ⊂ Σ is unbounded.

Proof. This follow immediately from theorem 7.3 part (iv) from Buffoni et al. (2001,
p. 45) where lemma 2.5 verifies hypotheses C1-C8 of this reference, and the func-
tional ν required to verify C6 is given by the norm ‖w‖+ |k|.
Corollary 2.7. The set C contains a bifurcation at infinity in Z ×R in the sense
that there is a sequence (wn, µn) ⊂ C such that ‖wn‖C0 → ∞ as n → ∞, where
0 < µn < c− b.

According to the real-analytic bifurcation theory of Buffoni et al. (2001) the
continuum C in the statement of theorem 2.6 actually contains an unbounded set
which is path-connected (see theorems 7.3 and 7.4 of Buffoni et al. (2001)); this is
a stronger conclusion than the global results to be found in Kielhöfer (1984) which,
if applicable, could only assert that C is unbounded. Furthermore, with regard to
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the asymptotic properties of C we would like to be able to demonstrate that the
bifurcation at infinity in corollary 2.7 occurs in such a way that the sequence µn

satisfies µn ↗ c − b as n → ∞. While numerical experiments given later in the
paper indicate this to be the case, we have been unable to prove this in general.

Remark 2. One can extend all of the above results to the case d ≥ 2 with Ω a
domain in Rd by replacing the Ck-spaces in the statement of each result with its
corresponding Hölder space, Ck,α with 0 < α < 1. The only additional assumption
required is that ∂Ω is a C2,α, codimension-1, orientable submanifold of Rd. In this
case, the functions φ1 and φ2 are the principal eigenfunctions of the operators −L1

and −L2.

3. Matched Asymptotics of the Global Branch

In the previous section we demonstrated the existence of a vertical branch of solu-
tions to (1.3) bifurcating from the trivial branch at the bifurcation point a = b. In
addition, we have shown for b < a < c that there exists a secondary global branch of
non–trivial solutions of (1.3) emanating from the vertical branch (S, I) = (kφ1, 0)
at the bifurcation point k = k∗. In this section we obtain formal asymptotic prop-
erties of the solutions on the global branch C for values of a near c. To this end,
we rewrite (1.3-1.4) by employing the following rescaling

S =
c

λ
S̃ and I =

c(a− b)
λ(c− a)

Ĩ ,

set c− a = ε and then remove the tildes for clarity. The system (1.3-1.4) can then
be written as the singularly perturbed boundary-value problem

−εL1S = (c− b− ε)(εS + cI − εI − cSI),
−L2I = cI(S − 1), x ∈ Ω,

0 = D1(x)Sx + C1(x)S = D2(x)Ix + C2(x)I, x ∈ ∂Ω. (3.1)

We assume that 0 < ε ¿ 1 and analyse the solutions of (3.1) in the a → c limit,
that is ε → 0. We use well-known singular perturbation theory (Murray 1984) to
obtain an approximation to the true solution of (3.1) valid for small ε.

(i) Outer solution

Let us begin by seeking a solution of (3.1) in the form

Sout = S0 + εS1 + O(ε2) and I = I0 + εI1 + O(ε2). (3.2)

Substituting these expressions into (3.1) and equating the coefficients of powers of
ε we obtain the following at O(1):

0 = c(c− b)I0(1− S0), x ∈ Ω, (3.3)
−L2I0 = cI0(S0 − 1), x ∈ Ω, (3.4)

together with boundary conditions

D1(x)S0x + C1(x)S0 = 0, x ∈ ∂Ω, (3.5)
D2(x)I0x + C2(x)I0 = 0, x ∈ ∂Ω. (3.6)
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14 I. Beardmore and R. Beardmore

It is easy to see that we must take S0 = 1 and I0 = Bφ2(x), where B is a constant to
be determined and φ2(x) is defined above. The function I0 clearly satisfies the nec-
essary boundary conditions (3.6) although S0 satisfies (3.4) but not the boundary
conditions. Thus we anticipate that for small ε, the S component of the solution of
(3.1) will undergo a rapid change in value in a small neighbourhood of the boundary
of Ω.

Before proceeding, we determine the constant B by equating coefficients at O(ε):

−L1S0 = (c− b)S0 + c(1− S0)((c− b)I1 − 1)− (c− b)I0(1 + cS1),
−L2I1 = c(S0I1 + S1I0)− cI1,

which yields

−C ′1(x) = (c− b)− (c− b)Bφ2(1 + cS1), (3.7)
−L2I1 = cBφ2S1. (3.8)

From (3.7) we calculate

S1 =
C ′1(x) + (c− b)(1−Bφ2)

c(c− b)Bφ2
, (3.9)

and hence

Sout = 1 + ε
C ′1(x) + (c− b)(1−Bφ2)

c(c− b)Bφ2
+ O(ε2).

Substituting (3.9) into (3.7) we have

−L2I1 =
C ′1(x)
(c− b)

+ 1−Bφ2 =: f(x), (3.10)

from where, using a solvability condition of Fredholm-type gives

∫

Ω

φ2

(
C ′1(x)
(c− b)

+ 1−Bφ2

)
dx = 0.

To see this, note that a solution to (3.10) can be obtained by writing I1 = wφ2 and
solving −L2w = f(x). But this requires

∫
φ2(x)f(x)dx = 0 as L2 is self-dual and

φ2 spans the null-space of this operator. We may therefore conclude that

B =
1

(c− b)

∫
Ω

φ2(C ′1(x) + 1)dx∫
Ω

φ2
2dx

(3.11)

and

I(x) = Bφ2(x) + O(ε), (3.12)

with B defined above, is a valid asymptotic expression for the I component of the
solution of (3.1).
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(ii) Inner solutions

Next we construct inner solutions of the S component of the solution of (3.1)
which are valid close to the boundaries of Ω at x = 0 and x = 1.

Consider first the boundary at x = 0. Let us define the variable

y =
x

εα
, α > 0,

which stretches out the immediate neighbourhood of x = 0. It follows that in the
small region close to x = 0, the behaviour of the S component of solutions of (3.1)
can be investigated by studying solutions of the following problem

−ε1−2αD1Syy − ε1−α(C1(εαy)S)y = (c− b− ε)(εS + I(c− ε− cS)), y > 0,

0 = ε−αD1(εαy)Sy + C1(εαy)S, y = 0.

Using a standard procedure (Murray 1984), we choose α = 1
2 which gives

−D1Syy − ε
1
2 (C1S)y = (c− b− ε)(εS + I(c− ε− cS)), y > 0,

0 = D1Sy + ε
1
2 C1S, y = 0.

(3.13)

Note that C1(x) and I(x) are known functions of x and, in terms of the new
coordinate, we have D1 ≡ D1(ε1/2y), C1 ≡ C1(ε1/2y) and I ≡ I(ε1/2y). Next we set
the inner solution at the boundary x = 0 to be of the form

S0
in = S0

0 + ε1/2S0
1 + o(ε1/2).

Substituting into (3.13) we equate the terms of the same power, expressing the
functions D1(ε1/2y), C1(ε1/2y) and I(ε1/2y) using Taylor’s theorem as

D1(ε1/2y) = D1(0)+ε1/2yD′
1(0)+o(ε1/2), C1(ε1/2y) = C1(0)+ε1/2yC ′1(0)+o(ε1/2),

and I(ε1/2y) = B(φ2(0) + ε1/2yφ′2(0) + o(ε1/2)).
Equating terms at order O(1) we have

−D1(0)S0
0yy = c(c− b)B(1− S0

0), y ∈ (0,∞). (3.14)

Clearly S0
0 = 1 solves (3.14) and also satisfies the O(1) boundary condition S0

0y = 0
at y = 0. Equating terms of order O(ε1/2) we have

D1S
0
1yy = c(c− b)BS0

1 , y ∈ (0,∞), (3.15)

together with the boundary condition

D1(0)S0
1y + C1(0)S0

0 = 0, y = 0. (3.16)

The general solution of (3.15) is of the form

S0
1 = Q1e

y
√

p + Q2e
−y
√

p,

where

p =
c(c− b)B

D1(0)
, (3.17)
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while Q1 and Q2 are constants to be determined. We now perform the matching
procedure which, together with boundary conditions (3.16), will determine Q1 and
Q2. Let

η =
x

γ(ε)

be considered fixed, where γ is some function such that γ(ε) → 0 and γ(ε)ε−1/2 →∞
as ε → 0. We now use the matching conditions (Murray 1984)

lim
ε→0

S0
in

(
ηγ(ε)
ε1/2

)
= lim

ε→0
Sout(ηγ(ε)),

which gives Q1 = 0. Then in order for S0
1 = Q2e

−y
√

p to satisfy (3.16) we need

Q2 =
C1(0)√

Bc(c− b)D1(0)
. (3.18)

We conclude that
S0

in = 1 + ε1/2Q2e
−y
√

p + o(ε1/2)

where Q2 and p are defined in (3.18) and (3.17).
Next we consider the boundary at x = 1. Let us define the variable z by

z =
1− x

ε1/2
,

which stretches the region around x = 1. It follows that in the small region close to
x = 1, the behaviour of the S component of solutions to (3.1) can be investigated
by studying solutions of the following problem

−D1Szz + ε1/2(C1S)z = (c− b− ε)(εS + I(c− ε− cS)), z > 0,

0 = D1Sz − ε1/2C1S, z = 0.
(3.19)

Now D1(x), C1(x) and I(x), in terms of new coordinate, become D1 ≡ D1(1 −
ε1/2z), C1 ≡ C1(1 − ε1/2z) and I ≡ I(1 − ε1/2z). We set the inner solution at the
boundary x = 1 to be of the form

S1
in = S1

0 + ε1/2S1
1 + o(ε1/2),

and substituting into (3.19) we equate the terms of the same order expressing
D1(1 − ε1/2z), C1(1 − ε1/2z) and I(1 − ε1/2z), using Taylor’s theorem, as D1(1 −
ε1/2z) = D1(1)− ε1/2zD′

1(1)+ o(ε1/2), C1(1− ε1/2z) = C1(1)− ε1/2zC ′1(1)+ o(ε1/2)
and I(1− ε1/2z) = B(φ2(1)− ε1/2zφ′2(1) + o(ε1/2)). Starting with the lowest order
terms at O(1), we have

−D1(1)S1
0zz = c(c− b)Bφ2(1)(1− S1

0), z > 0. (3.20)

Clearly S1
0 = 1 solves (3.20) and also satisfies the boundary conditions S1

0z = 0 at
z = 0.

Equating terms of order O(ε1/2) we have

D1(1)S1
1zz = c(c− b)Bφ2(1)S1

1 , z > 0, (3.21)
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together with the boundary conditions

D1(1)S1
1z − C1(1)S1

0 = 0, z = 0. (3.22)

The solution of (3.21) is of the form

S1
1 = R1e

z
√

q + R2e
−z
√

q,

where q = c(c−b)Bφ2(1)
D1

where R1 and R2 are constants to be determined.
Performing again the matching procedure, let

µ =
1− x

γ(ε)
,

for some function γ defined as in the case of the left boundary. Again, the matching
condition

lim
ε→0

S1
in

(
µγ(ε)
ε1/2

)
= lim

ε→0
Sout(1− µγ(ε)),

gives R1 = 0. In order for S1
1 = R2e

−z
√

q to satisfy (3.22), we require

R2 = − C1(1)√
Bc(c− b)D1(1)φ2(1)

. (3.23)

We have obtained
S1

in = 1 + ε1/2R2e
−z
√

q + o(ε1/2),

where R2 is defined above. Having calculated the outer and inner solutions for S
we can obtain a uniformly valid asymptotic solution. Adding the inner solutions at
each boundary to the outer solution and subtracting the intermediate form which
is included twice, we obtain

Sunif(x) = Sout(x) + S0
in

( x

ε1/2

)
+ S1

in

(
1− x

ε1/2

)
− 2 + o(ε1/2),

so that
Sunif(x) = 1 + ε1/2Q2e

− x

ε1/2
√

p + ε1/2R2e
− 1−x

ε1/2
√

q + o(ε1/2), (3.24)

with Q1 and R1 defined in (3.18) and (3.23) respectively, while the uniformly valid
expansion for I is given by (3.12). We can now obtain a uniformly valid asymptotic
expression for the solution of (1.3)

S(x) =
c

λ
+

c(c− a)1/2

λ

(
Q2e

− x

(c−a)1/2
√

p
+ (3.25)

R2e
− 1−x

(c−a)1/2
√

q
)

+ o((c− a)1/2),

I(x) =
c(a− b)
λ(c− a)

∫
Ω

φ2(C ′1(x) + 1)dx

(c− b)
∫
Ω

φ2
2dx

φ2(x) + o((c− a)−1), (3.26)

for x ∈ Ω.
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Figure 2. Population levels of susceptible (—) and infected (− − −) groups at steady
state. Birth parameter a on horizontal axis and supremum-norm on vertical axis for (a)
dumb form (b) furious form.

4. Discussion

In this section we illustrate the findings from the previous sections by simulating
the solution of (1.1-1.2) for b < a < c, using the NAG library routine D03PCF on
the spatial domain x ∈ [0, 5]. Throughout we take D1 and D2 to be constants and

Ci(x) = Ci tanh(x− xD), (i = 1, 2),

where Ci are constants and xD is the location of the focal point, situated in the
centre of the domain [0, 5]. Activity around the focal point is represented by the
strength of the convection and diffusion coefficients and we assume that only the
healthy individuals are involved in the upbringing of offspring. In simulating the be-
haviour of infected individuals we concentrate on the two extreme forms of disease:
furious and dumb. In each of these two cases we take the following the parameter
values b = 1/10, c = 1/2, λ = 1/5 with b < a < c and

1. dumb: D1 = 1, D2 = 1/20, C1 = C2 = 3

2. furious: D1 = 1, D2 = 4, C1 = 3, C2 = 1/100.

In both cases, we have assumed that the focal point is at the active stage. Sus-
ceptible individuals have a strong convective movement which simulates movement
to feed offspring but also disperse across the domain to forage.

We are interested in how different disease strains influence the spatial structure
of the steady state and its population levels. Let us remark that from an intuitive
point of view, the level of infection will increase at a given location provided that
the susceptible population is above the threshold level c

λ at that point. Therefore
we can expect that susceptible individuals will be able to coexist with the disease
provided that its levels are at, or below this threshold level in the regions containing
infected individuals. We now explore this intuition numerically for different disease
strains.

Figure 2 is the bifurcation diagram for (1.3-1.4) in both furious and dumb cases
and it illustrates the asymptotic divergence when a nears the mortality rate of
infected individuals c. In this diagram the total number of infected individuals at
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Figure 3. Steady state solutions for the dumb form of the disease at (a) a = 15/100 and
(b) a = 4/10; S is full line and I broken line. (far-right) S component of the steady state
for dumb form of disease at a = 5− (0.1)9

the steady state increases like O((c−a)−1), whereas the total number of susceptibles
at steady state is seen to increase much more slowly and asymptotic estimates
indicate that this number is bounded.

If we consider the dumb form of disease, then when the value of the birth
parameter, a, is close to the natural death rate of susceptible individuals, b, the
susceptible levels at steady state are necessarily higher than the infected population
levels (see Figure 3(a)). As the birth rate increases (see Figure 3(b)) the total
number of infected individuals at steady state eventually becomes larger than the
total number of the susceptible individuals. The susceptible population stays at or
below the threshold level in those areas where contact with infected individuals
is highest, and since the infected individuals suffer from the dumb form of the
disease, the highest number of them is situated around the focal point. Therefore
the density of the susceptible population is reduced to the threshold level around
the focal point, and this is c/λ = 2.5 (see Figure 3 (c)).

Figure 4 shows the change of steady state solutions for the furious form of
the disease as the birth parameter a changes. As in the dumb case, if the value
of a is close to the natural death rate of susceptible individuals, the susceptible
and infected populations coexist at the steady state level with lower numbers of
infecteds than susceptibles. Again, for a near c, the total number of susceptibles
is lower than the number of infecteds (see Figure 2(b)). Due to the movement
assumptions regarding the furious strain, for a near c the population density of
infected individuals at the coexistence steady state is at a very high level and is
almost uniformly distributed across the domain (see Figure 4(b)). Moreover, the
density of the susceptible population is also uniformly distributed throughout the
domain at the threshold value (see Figure 4(a)).

(a) A further dumb case

Figure 5 presents some steady state solutions of (1.1-1.2) for various values of
birth parameter a, with different movement parameters of susceptible individuals
from the two cases above. This could relate to the stage where the activity around
the focal point begins to slow down with the offspring reaching adulthood and
needing less attention. As a increases, an interesting feature is the spatial structure
of the susceptible population. The case when a nears b differs greatly from the
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Figure 4. Change of steady state solutions for (a) S and (b) I with respect to the birth
parameter a; movement parameter values are D1 = 1, D2 = 4, C1 = 3, C2 = 1/100.

Figure 5. Change of steady state solutions (a) S and (b) I with respect to the birth
parameter a; movement parameters are D1 = 1/2, D2 = 1/20, C1 = 1/2, C2 = 3.

case when a is close to c. In the first instance, the susceptible population follows a
unimodal distribution with the highest number of individuals situated around the
focal point. In the latter case, the structure of the steady state becomes bimodal
with two local maxima situated symmetrically about the focal point.

The bi-modal nature of the steady-state in figure 5 is due to the following factors.
When a is near c, there is a high concentration of infectivity around the den, so
that any susceptible individual there will soon become infected. This follows from
the asymptotic form for the infective class at steady-state in equation (3.26). This,
in combination with a sufficiently small ratio C1/D1 ensures that there is sufficient
movement of susceptibles away from the focal point to allow them to flourish in
those regions where infection is effectively absent. One can compare this with the
far-right diagram in figure 3 where convection to the den is too strong relative to
movement via diffusion to allow susceptible individuals to escape the region where
infecteds are concentrated.

Finally, we remark that the numerical simulations indicate that the coexistence
steady state, whose existence is demonstrated in section 2, is globally attractive
when b < a < c. In addition, when we used a fine spatial discretisation with a
collocation method in Content (see Kuznetsov et al. (1996)) to continue the branch
of steady-states, the software did not report any secondary bifurcations for the
movement parameters that we chose.
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