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Abstract. We explore the singularity-induced bifurcation and singular
Hopf bifurcation theorems and the degeneracies that arise when New-
ton’s Laws are coupled to Kirchhoff’s Laws. Such models are used in
the electrical engineering literature to describe electrical power systems
and they can take the form of either an index-1 differential-algebraic
equation (DAE) or a singularly perturbed ordinary differential equation
(ODE). As a consequence of the debate in the engineering literature as
to which class of system is the ‘true’ representation of power systems, we
include a discussion of the consequences of the power engineer’s ‘load-
flow singularity’ for both ODE and DAE.

1. Introduction

This paper discusses the nature of singular Hopf curves and singularity-
induced bifurcations (SIB) for those singular systems which possess a second-
order structure. This is motivated by electrical power systems for the fol-
lowing reasons. In [15, 19, 8, 16] one finds that there is often a second-order,
near-Hamiltonian structure present in the swing equations of classical power
system models which can be exploited, using a Melnikov method, to demon-
strate the existence of chaotic motion. One can also see from [8, 11, 20] that
there has been a debate in the power engineering literature as to whether
a power system is most faithfully represented by the index-1 differential-
algebraic equation (DAE) or by a singularly perturbed ODE. The purpose of
this paper is to place SIB [4] and singular Hopf bifurcation (SHB) theorems
[3, 21] in the context of those singular systems which have a second-order,
although not necessarily near-Hamiltonian structure.

There are essentially three objectives of this paper. Firstly we give a
definition of singularity-induced bifurcation point and present a discussion
of their existence in the class of DAE

(1) ẍ = f(x, ẋ, y, λ) ∈ Rn, 0 = g(x, y, λ) ∈ Rm, y ∈ Rm

which arises in the theory of power systems [16, 17, 8]. One aspect of
this system which makes it degenerate is the independence of the algebraic
constraint of any velocity terms ẋ. The notion of SIB point, which first
arose in [22], is usually discussed in terms of the DAE

(2) ẋ = f(x, y, λ), 0 = g(x, y, λ).
1
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However, when we write (1) as a first-order system, it cannot satisfy the SIB
theorem from [4].

Secondly, we extend the applicability of the singular Hopf bifurcation
theorem found in [3, 21] for the system of ODEs

(3) xτ = εf(x, y, λ, ε) ∈ Rn, yτ = g(x, y, λ, ε) ∈ Rm,

independently of the slow-manifold dimension, n.
Here, f and g are smooth functions of all variables. We shall denote

xτ = dx
dτ and ẋ = dx

dt with t = ετ and a prime ·′ will denote the partial
derivative with respect to λ. We shall use N(L) to denote the null-space
of the linear mapping L and N (L) is the generalised null-space of L. For a
vector v ∈ Rp we write 〈v〉 = R · v = {µv : µ ∈ R}. Also, L(V ) denotes the
space of all linear maps over some vector space V .

Thirdly, we adapt the proof of the SHB theorem to include the second-
order structure observed in some power system models which have a fast
rather than algebraic variable y

(4) ẍ = f(x, ẋ, y, λ, ε) ∈ Rn, εẏ = g(x, y, λ, ε) ∈ Rm.

We show how the existence of SIB points when ε = 0 may signal the existence
of Hopf bifurcation points in this system when ε 6= 0.

Moreover, due to the local nature of the assumptions used, it is sufficient
only to study the linearisations of (1),(3) and (4) about some equilibrium
locus. The dynamical consequences are then immediate using standard,
local bifurcation theory, subject to typical non-resonance conditions [2, 1].

In the last section of this paper we see the effects that SIB points can have
in a power system model of the form (1) taken from the electrical engineering
literature.

1.1. Preliminaries and Definitions.

1.1.1. Hopf Curves. Assume (3) has a trivial equilibrium for all (λ, ε) ∈ R2.
From [3, 21] we know, when n = 1, that the assumption

(5) N(dyg(0, 0, λ0, 0)) = 〈k〉 (k ∈ Rm)

implies the existence of a smooth curve of so-called Hopf points {(λ(s), ε(s)) ⊂
R2 : s ∈ I ⊂ R} in parameter space. This assumption, in terms of power
engineering, is called the ‘load-flow singularity’ and it dominates the work
of many industrial power engineers, as can be seen from the notes [14] which
accompany a colloquium on this matter. The condition (5) is often cited as
a possible cause of ‘voltage collapse’ whereby there is a catastrophic failure
in a part of the electrical network. In DAE terms it is called a ‘solution-
manifold singularity’ whereas in singularly-perturbed parlance it is described
using the term ‘slow-manifold singularity’.

Suppose we define

K(λ, ε) =
(

εA(λ, ε) εB(λ, ε)
C(λ, ε) D(λ, ε)

)
def=

(
εdxf(0, 0, λ, ε) εdyf(0, 0, λ, ε)
dxg(0, 0, λ, ε) dyg(0, 0, λ, ε)

)
.
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We would like to ascertain the conditions under which there exists a smooth
curve s 7→ ω(s), for s ∈ I ⊂ R, such that

±iω(s) ∈ σ(K(λ(s), ε(s))).

Definition 1. A smooth curve {(λ(s), ε(s)) ⊂ R2 : s ∈ I ⊂ R} is called a
singular Hopf curve if ε(0) = 0, ε(s) 6= 0 for s 6= 0 and there is a smooth
function s 7→ ω(s) > 0 such that for all s ∈ I

iω(s) ∈ σ(K(λ(s), ε(s))).

The existence of singular Hopf curves is, of course, related to the existence
of periodic solutions and ducks oscillations [2, 21, 23, 3] but does not directly
imply their existence without further transversality assumptions.

1.1.2. Singularity-Induced Bifurcation. Singularity-induced bifurcation is the
term now used to describe when the linearisation of a DAE, with a parame-
ter, has parameterised eigenvalues with poles with respect to that parameter.
Typically for (2), if α(λ) is an eigenvalue then there is some µ 6= 0 such that
α(λ) ∼ µ(λ− λ0)−1 as λ → λ0 at an SIB point [4, 22]. However, no defini-
tion of SIB point has appeared in the literature to date. So, to place it in a
mathematical framework we give the following definition.

Definition 2 (SIB point). Suppose that (2) has a trivial equilibrium for all
λ ∈ R and that the linearisation about this equilibrium has an eigenvalue
locus α(λ). If, for some sequences (ln), (λn) ⊂ R with ln ↑ λ0, λn ↓ λ0 one
observes

(1) α(ln) and α(λn) →∞ as n →∞ such that
(2) <e(α(ln))<e(α(λn)) < 0

for all n, then λ0 is said to be a singularity-induced bifurcation point.
If there are exactly p distinct eigenvalue loci with property 1 such that

precisely one of them has property 2 then λ0 is said to be a simple, double,
triple, etc. SIB point according to the value of p.

One can see that if the DAE (2) satisfies the SIB theorem of [4, 22] at λ0

then it has a simple SIB point at λ0.
Definition 2 is adopted for the following reasons. Property 1 is the essen-

tial diverging eigenvalue property of the original SIB theorem from [22], but
the following DAE has a diverging eigenvalue and therefore satisfies property
1. However, it does not satisfy property 2.

Example 1. Consider

ẋ = −x− y, 0 = x− λ2y.

The eigenvalue is −(1 + 1/λ2).

There is no change in stability of the zero equilibrium of this system as
λ passes through 0, so we choose to rule out this degenerate behaviour in
the definition of SIB point. The following system shows why simple poles in
eigenvalue loci are not sufficient to provide SIB points.
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Example 2. Consider

ẋ = z, ẏ = x, 0 = y − λ2z.

There are two eigenvalue loci with simple poles, namely ±1/λ.

For all λ near 0, the dimension of the stable and unstable invariant sub-
spaces Es,u(0) is one. Also, λ = 0 is not an SIB point according to Definition
2.

The capacity for DAEs to exhibit SIB points stems from the fact that ma-
trix pencils admit infinite eigenvalues [13, 6] and parameterised matrix pen-
cils are the linearisations of DAE. Notice from Definition 2 that no metion
is made of any bounded eigenvalues and their behaviour at λ0; we simply
choose not to include this in our definition.

1.1.3. Matrix Pencils and The Kronecker Normal Form. Suppose that (Â, B̂) ∈
L(RN ) × L(RN ) is a square matrix pair. It induces an affine mapping
R→ L(RN ) by

s 7→ sÂ− B̂.

Both the pair (Â, B̂) and the induced mapping are said to be matrix pencils.
The pencil is said to be regular if and only if there exists an s0 ∈ C such
that det(s0Â− B̂) 6= 0.

We say that the spectrum of the matrix pencil is given by

σ(Â, B̂) = {s ∈ C : det(sÂ− B̂) = 0}.

Denote by #σ(Â, B̂) the cardinality of the spectrum and note that this could
be zero.

The following theorem [13, 6] is the so-called Kronecker Normal Form.
This provides the matrix pencil analogy of the Jordan Normal Form.

Theorem 1 (Kronecker Normal Form (KNF)). Suppose that (Â, B̂) is a
regular matrix pencil on RN . One can decompose RN = U ⊕ V where there
are maps P ∈ GL(RN ), Q ∈ GL(U ⊕ V,RN ) and a Ĉ ∈ L(U) such that

PÂQ =
[

Iu 0
0 N

]
, P B̂Q =

[
Ĉ 0
0 Iv

]

where there is a ν ≥ 1 such that Nν = 0. Let ν be the smallest integer such
that Nν = 0. Here Iu ∈ L(U) and N, Iv ∈ L(V ); Iu and Iv denote identities.
Moreover,

σ(Â, B̂) = σ(Ĉ) and #σ(Â, B̂) = dimU.

The pair (Â, B̂) has index given by ind(Â, B̂) = ν.
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2. Double SIB Points

Let us examine the singular behaviour along an equilibrium locus in the
following second-order, index-1 DAE

(6) ẍ = f(x, y, λ), 0 = g(x, y, λ).

This is reversible with involution (x, ẋ, y) 7→ (x,−ẋ, y). Assume (6) has a
trivial equilibrium for all λ ∈ R and write its linearisation as the matrix
pencil (M,L(λ)), where

M
def=




In 0 0
0 In 0
0 0 0


 ∈ L(R2n+m)

and

L(λ) def=




0 I 0
A(λ) 0 B(λ)
C(λ) 0 D(λ)


 def=




0 I 0
fx 0 fy

gx 0 gy


 ∈ L(R2n+m),

evaluated at (0, 0, λ).

Lemma 1 (Reversible SIB). Suppose N(D(λ0)) = 〈k〉 for some non-zero
k ∈ Rm and that N(D(λ0)T ) = 〈u〉). Let δ0

def= uTD′(λ0)k 6= 0 and µ0
def=

uTC(λ0)B(λ0)k 6= 0. It follows that the matrix pencil (M, L(λ)) has two
algebraically simple eigenvalues, α±(λ), such that

α±(λ) = ±
√

δ0/µ0√
λ− λ0

± ψ
(√

λ− λ0

)

for all λ near λ0, where ψ(x) ∈ R whenever x ∈ R and ψ(x) = O(x) as
x → 0.

Proof. By definition, σ(M, L(λ)) = {α ∈ C : ∃v 6= 0, αMv = L(λ)v}.
It follows that, if D(λ) = gy(0, 0, λ) is invertible, the eigenvalues of the
linearisation about the equilibrium of (6) are the eigenvalues of the Schur
complement

Sλ =
(

0 I
(A− BD−1C)(λ) 0

)
.

So define S(λ) def= (A− BD−1C)(λ). It is clear from

S2
λ =

( S(λ) 0
0 S(λ)

)

that σ(M, L(λ)) = σ(Sλ) = +
√

σ(S(λ)) ∪−
√

σ(S(λ)). One can now apply
SIB from [4, 5] to the Schur complement S(λ) to finish the proof. ¤

This lemma shows that the reversible structure in (6) forces poles of order
1/2 in the eigenvalues of its linearisation. This is not merely of academic
interest since this class of model has been used to describe power systems
[16]. However, λ0 is not an SIB point according to Definition 2. This is
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because property 2 is not satisfied and one cannot decide on the basis of the
eigenvalues whether or not their divergence has led to a change in the local
stability properties of the equilibrium locus.

More generally, one can generate poles of order 1/j in eigenvalue loci, for
any j ∈ N, by applying the SIB theorem to the following DAE

(7)
(

d

dt

)j

x = A(λ)x + B(λ)y, 0 = C(λ)x +D(λ)y.

If the matrix pencil

(M,L(λ)) def=
((

I 0
0 0

)
,

( A(λ) B(λ)
C(λ) D(λ)

))
∈ L(Rn+m)× L(Rn+m)

satisfies the SIB theorem of [4] at λ = λ0, then there are diverging eigenval-

ues of the j-th order problem (7) given by the j complex numbers
(

µ
λ−λ0

+ O(1)
)1/j

.
One can subsequently show that there are DAEs with SIB points of order
j, for any natural number j.

2.1. Including Dissipative Terms. We now consider the nature of SIB
points in the following class of index-1 DAE,

(8) ẍ = A(λ)x + Θ(λ)ẋ + B(λ)y, 0 = C(λ)x +D(λ)y.

Define

Ld(λ) def=




0 I 0
A(λ) Θ(λ) B(λ)
C(λ) 0 D(λ)


 def=

(
A(λ) B(λ)
C(λ) D(λ)

)
∈ L(R2n+m).

Clearly if D (= D) is invertible then

σ(M, Ld(λ)) = σ
(
A−BD−1C

)
= σ

(
0 I

A(λ)− B(λ)D(λ)−1C(λ) Θ(λ)

)
.

To analyse the spectrum of this pencil at infinity it is simpler to consider a
related problem at zero, assuming that Ld(λ0) is invertible, as the following
lemma from [5] shows.

Lemma 2. Define the matrices

M =
(

I 0
0 0

)
and L =

(
A B
C D

)
∈ L(Rp+q)

for p, q ∈ N and suppose that detL · detD 6= 0. If

L−1 =
(

A1 B1

C1 D1

)
∈ L(Rp+q)

and
Sλ = A−BD−1C ∈ L(Rp)

then Sλ = A−1
1 and detL = detSλ · detD. Moreover, if detD = 0 then

detA1 = 0. If N(D) = 〈k〉 and CBk 6∈ R(D) then N(A1) = 〈Bk〉 and Bk 6∈
R(A1). In addition, σ(M,L) = 1/(σ(A1)\{0}).
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Denote

Ld(λ)−1 =
(

A1(λ) B1(λ)
C1(λ) D1(λ)

)
∈ GL(R2n+m)

and write
( A(λ) B(λ)
C(λ) D(λ)

)−1

=
( A1(λ) B1(λ)
C1(λ) D1(λ)

)
∈ GL(Rn+m).

Using Lemma 2, if D (= D) is invertible then A1 is invertible,

A1 = S−1
λ = (A−BD−1C)−1 and Sλ

def= A−1
1 = (A− BD−1C)−1

and therefore for λ near λ0,

σ(Sλ) = σ(M, Ld(λ)) = 1/(σ(A1(λ))\{0}).
From these observations one can deduce the following lemma. This gives
information as to both the divergent and bounded elements of σ(M, Ld(λ))
at a point where D ceases to be invertible.

Lemma 3. Suppose that detLd(λ0) 6= 0, N(D(λ0)) = 〈k〉 for some non-zero
k ∈ Rm, D′(λ0)k 6∈ R(D(λ0)) and C(λ0)B(λ0)k 6∈ R(D(λ0)). It follows that
A1(λ0) is a singular mapping with a zero eigenvalue of algebraic multiplicity
2 and geometric multiplicity 1. Hence, there are 2n− 2 eigenvalues of (A−
BD−1C)(λ) which can be extended to non-zero, continuous functions of λ
in a neighbourhood of λ0.

Proof. A simple calculation shows that if
( A(λ0) B(λ0)
C(λ0) D(λ0)

)−1
def=

( A1 B1

C1 D1

)
∈ L(Rn+m)

then

Ld(λ0)−1 =



−A1Θ A1 B1

In 0 0
−C1Θ C1 D1


 =

(
A1 B1

C1 D1

)
∈ L(R2n+m)

so that

A1 = A1(λ0) = lim
λ→λ0

(A−BD−1C)−1 =
( −A1Θ A1

In 0

)∣∣∣∣
λ=λ0

,

where Θ(λ0) = Θ. Under the assumptions in this lemma it follows that

N(A1) = 〈Bk〉
which represents an algebraically simple, zero eigenvalue of A1. Note also
that limλ→λ0(A− BD−1C)−1 = A1(λ0).

Suppose that for some (u, v) ∈ Rn+m

A2
1

(
u
v

)
=

(
0
0

)
.
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Using N(A1) = 〈(0,Bk)〉 a direct calculation yields v − Θu = rBk, for any
r ∈ R. Therefore u = sBk and v = rBk + sΘBk for any s ∈ R. Hence (u, v)
lies in the two-dimensional space

V def= 〈(0,Bk), (Bk, ΘBk)〉 .
One can easily show that N(A3

1) = N(A2
1) = V, so that dimN (A1) = 2 and

the first part of the lemma is proven.
To prove the remainder, simply note that because A1 has a zero eigen-

value of algebraic multiplicity equal to 2, the remaining 2n−2 eigenvalues in
σ(A1) are non-zero. As A1 = (A−BD−1C)−1, the reciprocals of these 2n−2
non-zero eigenvalues provide the necessary numbers to remove the singulari-
ties from the bounded elements of the spectrum of A−BD−1C at λ = λ0. ¤

This implies the existence of 2n functions, αj(λ) ∈ σ(M, Ld(λ)), such that
as λ → λ0

α1,2(λ) →∞, αj(λ) → αj 6= 0 (j = 3, ..., 2n).
We find that λ0 satisfies property 1 of Definition 2. To prove λ0 is a double
SIB point we need the real part of the two diverging eigenvalues α1,2 and
this we now calculate.

Lemma 4. If we denote, under the assumptions of Lemma 3

µ = −uTC(λ0)B(λ0)k
uTD′(λ0)k

(u ∈ N(D(λ0)T ))

then limλ→λ0 α1,2(λ)2(λ− λ0) = µ.

Proof. One can apply the argument from the proof of the SIB theorem in
[4, 5] to the mapping J(λ) def= (λ− λ0)S2

λ. Note that for all λ near λ0

(λ− λ0)α1,2(λ)2 ∈ σ(J(λ)).

Define

J(λ0) =
( J0 0

ΘJ0 J0

)
∈ L(R2n)

where J0 = limλ→λ0(λ−λ0)(A−BD−1C) = −1
dB(adjD)C and d = d

dλdetD(λ)
∣∣
λ=λ0

.
From the proof of the SIB theorem in [5] we see that σ(J0) = {0, µ} where
J0Bk = µBk and the result follows. ¤

We now find sufficient conditions for the existence of double SIB points in
(8).

Lemma 5. Suppose that the assumptions of Lemma 3 apply to (M, Ld(λ))
at λ = λ0 and let α1,2(λ) be the two diverging eigenvalues of Sλ at λ0. Since
tr(Sλ) = tr(Θ(λ)) is a C1 function in a neighbourhood of λ0, if we denote
∪2n

i=1αi(λ) = σ(Sλ), we may define the real-valued continuous functions

τ(λ) def= −detLd(λ0)
d

2n∏

i=3

αi(λ)−1,
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with d = d
dλdetD(λ)

∣∣
λ=λ0

6= 0 and

q(λ) def= tr(Θ(λ))−
2n∑

i=3

αi(λ).

Then τ(λ0) = −detLd(λ0)

d
Q2n

j=3 αj
6= 0 and there admits an asymptotic representation

of two algebraically simple eigenvalues α1,2(λ) of Sλ given by

α1,2(λ) ∼ ±
√

τ(λ)√
λ− λ0

+
1
2
q(λ0) + O

(√
λ− λ0

)

as λ → λ0.

Proof. The 2n − 2 continuous functions αi(λ), i = 3, ..., 2n, have remov-
able singularities at λ0 with values which are non-zero. By Lemma 2,∏2n

i=1 αi(λ) = detL(λ)
detD(λ) . Therefore, for all λ near λ0 with λ 6= λ0, we have

α1(λ)α2(λ) =
detL(λ)

detD(λ)
∏2n

i=3 αi(λ)
def= p(λ) and α1(λ) + α2(λ) = q(λ).

It follows easily that α(λ)2 − α(λ)q(λ) + p(λ) = 0 from where α1,2(λ) =
1
2

{
q(λ)± [

q(λ)2 − 4p(λ)
]1/2

}
. But detD(λ) = d · (λ− λ0) + o(λ− λ0) and

p(λ) = −τ(λ)
λ−λ0

+O(1) as λ → λ0. The asymptotic representation of the eigen-
values now follows. Algebraic simplicity of α1,2 follows from the existence
of αj for j = 3, ..., 2n and the subsequent boundedness of αj(λ) at λ0, for
j = 3, ..., 2n. ¤

Definition 3. For a square matrix pencil (Â, B̂), define its trace

tr(Â, B̂) =
∑

σ(Â, B̂).

The sum is taken over the elements of the finite spectrum and Σ(∅) = 0.

We now state the main result of this section.

Theorem 2 (Double-SIB Theorem). Suppose that the conditions of Lemma
3 apply to the DAE (8) at λ = λ0 and

(9) tr(Θ(λ0)) 6= tr(M, Ld(λ0)),

then λ0 is a double SIB point.

Proof. Let ln ↑ λ0 and λn ↓ λ0 be any two sequences and write q0 = q(λ0) 6=
0 from Lemma 5. We know that α1,2 are the two diverging eigenvalues
associated with (8) and any other eigenvalue remains bounded and non-zero
at λ0. In the notation of Lemmas 3 and 5 suppose that τ(λ0) > 0; the
τ(λ0) < 0 case is treated analogously.
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As n →∞

<e(α1(ln)) ∼ <e

( √
τ(ln)√

ln − λ0
+

1
2
q0 + O(ln − λ0)1/2

)
→ 1

2
q0,

<e(α1(λn)) =

√
τ(λn)√

λn − λ0
<e

(
1 + O(λn − λ0)1/2

)
,

<e(α2(ln)) ∼ <e

(
−

√
τ(ln)√

ln − λ0
+

1
2
q0 + O(ln − λ0)1/2

)
→ 1

2
q0,

and

<e(α2(λn)) =

√
τ(λn)√

λn − λ0
<e

(
−1 + O(λn − λ0)1/2

)
.

Now

<e(α1(ln))<e(α1(λn)) ∼ 1
2
q0

(
τ(λ0)

λn − λ0

)1/2

+ O(1),

and

<e(α2(ln))<e(α2(λn)) ∼ −1
2
q0

(
τ(λ0)

λn − λ0

)1/2

+ O(1);

exactly one of these is negative for all n large enough and the result follows.
¤

This theorem provides exactly the right degeneracy condition to ensure
that (1) has a double SIB point in the sense of Definition 2. If condition
(9) does not hold there is no reason to expect property 2 in Definition 2 to
be satisfied. For instance, we find that the DAE (6) cannot have a double
SIB point because the term q(λ0) = tr(Θ(λ0)) − tr(M, Ld(λ0)) is found to
be zero for this class of DAE, as the following lemma shows.

Lemma 6. Given the non-singular matrix

L =




0 I 0
A 0 B
C 0 D


 ∈ L(R2n+m)

then tr(M,L) = 0. If detD = 0 then #σ(M, L) ≤ 2n − 2. If N(D) = 〈k〉
and CBk 6∈ R(D) then #σ(M, L) = 2n− 2.

Proof. Observe that σ(M, L) = {σ(L−1M)\{0}}−1 and L−1M has the form

L−1M =




0 A1 0
I 0 0
0 ∗ 0


 ∈ L(R2n+m)

where A1 is defined in Lemma 3. The non-zero eigenvalues of this mapping
are given by the non-zero elements of ±

√
σ(A1) and therefore α ∈ σ(M, L)

implies −α ∈ σ(M, L) and the first part follows. If detD = 0, using Lemma
2, we know that detA1 = 0 and the second part follows. Finally, under
the conditions of Lemma 3 equality is achieved in the given inequality with
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Θ(λ0) = 0 in the notation of Lemma 3. ¤

2.2. Kronecker Index Jumps. An observation originally made in [5] is
that the SIB theorem implies the existence of a jump in index of the pencil
under consideration at the SIB point. Now, the structure associated with (1)
is particularly special and the transition through the SIB point as λ varies
is always from the class of index-1 matrix pencils, and back. The passage
at the SIB point is via a class of higher (≥ 2) index pencils as shown by the
two following lemmas.

Lemma 7 (Kronecker Index Jump [5]). Denote

M =
[

I 0
0 0

]
and L =

[
A B
C D

]
∈ L(Rp+q)

and suppose detL 6= 0. Then

ind(M, L) = 1 ⇔ detD 6= 0.

If N(D) = 〈k〉 for some non-zero k ∈ Rq such that CBk 6∈ R(D) then
ind(M,L) = 2.

Lemma 8. Suppose that (Â, B̂) is a regular matrix pencil of index ν and φ
is C∞, then the index of the non-autonomous, j-th order descriptor system

(10) Â

(
d

dt

)j

z(t) = B̂z(t) + φ(t)

is j(ν − 1) + 1.

Proof. Let Φ be a smooth function and (S, T ) a regular matrix pencil.
Suppose the solution operator of the DAE

(11) Sẇ = Tw + Φ(t)

is a function of the κ-jet (t,Φ, Φ′, ...,Φ(κ)) but not of the κ+1-jet (t,Φ, Φ′, ...,Φ(κ+1)),
then (11) has differential index κ + 1. The pencil (S, T ) therefore has Kro-
necker index κ+1. Now the solution of (10) can be written down in terms of
φ using the Kronecker Normal Form. From [6] we find that the highest order
derivative of φ which can appear is the j(ν− 1)-th and the result follows. ¤

We can now see that the DAE (7) has a jump in its index at the SIB
point λ0. If we write (7) in the form

(
d

dt

)j

Mż = L(λ)z

then we may apply Lemmas 7 and 8 as follows. At λ = λ0, the j-th order
system (7) has index

j · (ind(M,L(λ0))− 1) + 1 = j + 1

because ind(M,L(λ0)) = 2. If λ 6= λ0 then ind(M,L(λ)) = 1, which implies
that the index of (7) is also 1 when λ 6= λ0.
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3. Singular Perturbations, Simple & Double SIB Points

We can give an interpretation of double SIB points in terms of Hopf bifur-
cations for the related singular perturbation problem (4). Before doing so,
we present a proof of the SHB theorem. This can then be easily generalised
to include the structure present in (4).

3.1. The SHB Theorem. Now we give a simple proof of the existence of
Hopf curves in (3) independently of n and m. Recall that the matrix K(λ, ε)
is the linearisation of (3) about its trivial equilibrium locus.

Theorem 3. Suppose that N(D(λ0, 0)) = 〈k〉 for some non-zero k ∈ Rm

and σ(D(λ0, 0)) contains no other eigenvalues of zero real part. Denote
N(D(λ0, 0)T ) = 〈u〉 and suppose δ0

def= uT D′(λ0, 0)k 6= 0. If1 uT k = 1 and

uT C(λ0, 0)B(λ0, 0)k = −ω2
0 < 0

then there is a δ > 0 and a smooth curve w 7→ (λ0(w), ε0(w)), for w ∈
(−δ, δ), such that

±i
ε0(w)

w
∈ σ(K(λ0(w), ε0(w))).

Moreover, this represents an algebraically simple eigenvalue. In addition,

ε0(0) = 0, λ0(0) = λ0, lim
w→0+

ε0(w)
w2

= ω2
0

and both λ0 and ε0 are even functions.

Proof. Consider the suspended nonlinear system

ẋ = εA(λ, ε)x + εB(λ, ε)y, ẏ = C(λ, ε)x + D(λ, ε)y(12)

λ̇ = 0, ε̇ = 0.

Define D
def= D(λ0, 0). By assumption we have N(D) = 〈k〉 and k 6∈ R(D).

If δ(λ, ε) def= uT D(λ, ε)k then δ0 = ∂δ
∂λ(λ0, 0) = uT D′(λ0, 0)k 6= 0. Decompose

Rm = 〈k〉 ⊕ 〈u〉⊥ and write

y(t) = α(t)k + r(t), r(t)T u ≡ 0.

Then ẏ = α̇k + ṙ = C(λ, ε)x + D(λ, ε)(αk + r), and if Π : Rm → R(D) is
the projection onto 〈u〉⊥ = R(D) along 〈k〉 then

α̇ = uT C(λ, ε)x + δ(λ, ε)α + uT D(λ, ε)r
ṙ = Π [C(λ, ε)x + αD(λ, ε)k + D(λ, ε)r] .

1This is a normalisation condition which does not affect the generality of the proof but
implies that 0 is an algebraically simple eigenvalue of D(λ0, 0).
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Write the restricted mapping ∆ def= D|〈u〉⊥ ∈ GL(R(D)), let C
def= C(λ0, 0)

and make the linear transformation κ = r + ∆−1ΠCx. Then

κ̇ = ṙ + ∆−1ΠCẋ

= Π
[
C(λ, ε)x + αD(λ, ε)k + D(λ, ε)(κ−∆−1ΠCx)

]
+

ε∆−1ΠC
[
A(λ, ε)x + B(λ, ε)[αk + κ−∆−1ΠCx]

]

so that when ε = 0, λ = λ0 we have the linear system

ε̇ = 0, λ̇ = 0, ẋ = 0, α̇ = uT Cx, κ̇ = ∆κ.

By the centre manifold theorem, using the fact that ∆ is hyperbolic, one can
find a smooth invariant manifold on which κ = h(x, α, λ, ε) and therefore
r = −∆−1ΠCx + h(x, α, λ, ε). It is also true that h(0, 0, λ0, 0) = 0 and
dh(0, 0, λ0, 0) = 0.

We now consider the reduced system on the centre manifold, which is

ẋ = εÂ(λ, ε)x + εB̂(λ, ε)α + h1(x, α, λ, ε)(13)

α̇ = Ĉ(λ, ε)x + δ(λ, ε)α + h2(x, α, λ, ε).

Note that

Â(λ, ε) = A(λ, ε)−B(λ, ε)∆−1ΠC, B̂(λ, ε) = B(λ, ε)k

Ĉ(λ, ε) = uT
[
C(λ, ε)−D(λ, ε)∆−1ΠC

]
, h1 = B(λ, ε)h, h2 = uT D(λ, ε)h.

Now seek conditions which ensure that equation (13) has a linearisation
with purely imaginary eigenvalues. To this end, scale the linearisation of
(13) about the equilibrium x = 0, α = 0 by 1/ε and seek a µ ∈ C such that

0 = c(µ, λ, ε) def=
∣∣∣∣

Â(λ, ε)− µIn B̂(λ, ε)
ε−1Ĉ(λ, ε) ε−1δ(λ, ε)− µ

∣∣∣∣ .

The eigenvalues associated with the linearisation of (13) are µε when µ
solves c(µ, λ, ε) = 0. Now, let µ = i/w for w ∈ R and seek a solution to
c(µ, λ, ε) = 0 for |w| small. Using Lemma 2,

c(µ, λ, ε) = det
(
Â(λ, ε)− µIn

)
×

ε−1
(
δ(λ, ε)− εµ− Ĉ(λ, ε)[Â(λ, ε)− µIn]−1B̂(λ, ε)

)

so that, for small enough |w|, c(i/w, λ, ε) = 0 if and only if

0 = −wδ(λ, ε) + εi + w2Ĉ(λ, ε)[wÂ(λ, ε)− iIn]−1B̂(λ, ε).

This is true because the smoothly-parameterised linear mapping L(w, λ, ε) =
wÂ(λ, ε)−iIn ∈ L(Cn) satisfies L(0, λ, ε) ∈ GL(Cn) and therefore L(w, λ, ε) ∈
GL(Cn) for all (w, λ, ε) in some neighbourhood of (0, λ0, 0). By the elemen-
tary Banach lemma

(14) L(w, λ, ε)−1 = i(In + iwÂ(λ, ε))−1 = i
∞∑

j=0

(−i)jwjÂ(λ, ε)j ,
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provided |w| · ‖Â(λ, ε)‖ < 1 in some norm. It follows that the real and
imaginary parts of the equation c(i/w, λ, ε) = 0 are given by

0 = −δ(λ, ε) + w2Ĉ(λ, ε)
∞∑

j=0

Â(λ, ε)4j+1w4j [In − Â(λ, ε)2w2]B̂(λ, ε)(15)

0 = ε + w2Ĉ(λ, ε)
∞∑

j=0

Â(λ, ε)4jw4j [In − Â(λ, ε)2w2]B̂(λ, ε)(16)

This defines a system γ(w, λ, ε) = 0 ∈ R2 such that γ(0, λ0, 0) = 0 and the
derivative of γ with respect to (λ, ε) is

d(λ,ε)γ(0, λ0, 0) =
( − ∂δ

∂λ(λ0, 0) −∂δ
∂ε (λ0, 0)

0 1

)
.

This has determinant equal to −δ0 6= 0 and therefore, by the implicit func-
tion theorem, one can solve γ = 0 for λ = λ0(w) and ε = ε0(w) such that
λ0(0) = λ0 and ε0(0) = 0.

However, we require that ε0(w) > 0 for definiteness and this can only
hold, for small enough |w|, if

0 > Ĉ(λ0, 0)B̂(λ0, 0) = uT C(λ0, 0)B(λ0, 0)k = −ω2
0.

Using (16), there is a function W such that W (0) = −ω2
0 and ε0(w)w−2 +

W (w) → 0 as w → 0. The eigenvalues of (12) are thus given by ±ε0(w)µ =
±iε0(w)/w whose algebraic simplicity follows by the uniqueness from the
implicit function theorem. As (15-16) is invariant under w 7→ −w, the func-
tions λ0 and ε0 must be even. ¤

It is precisely the conditions in Theorem 3 which, when applied to the
DAE (2), imply the existence of a simple SIB point.

Corollary 1. Suppose that δ0 · ω0 6= 0, then there is a function λ̃(·) such
that λ̃(0) = 0 and the parameterised curve {(λ(w), ε(w)) : w ∈ Nδ(λ0)} is
locally the graph {(λ̃(ε), ε) : ε ∈ [0, ε0)}. For ε > 0 sufficiently small, the
purely imaginary eigenvalue from Theorem 3 can be written as a function of
ε, namely iw̃(ε) ∈ σ(K(λ̃(ε), ε)) and this function satisfies w̃(ε) = |ω0|ε1/2 +
O(ε3/2) as ε → 0+.

Proof. Denote Ω = w2 and write equations (15-16) as Γ(Ω, λ, ε) = 0. Since

det (dλ,ΩΓ(0, λ0, 0)) =
∣∣∣∣
−δ0 ĈÂB̂
0 −ω2

0

∣∣∣∣ = δ0ω
2
0 6= 0

one can solve equations (15-16) for λ = λ̃(ε), Ω = Ω̃(ε) using the implicit
function theorem in a neighbourhood of (0, λ0, 0). From the proof of The-
orem 3, the purely imaginary eigenvalues of K(λ̃(ε), ε) are ±i multiplied
by

ε

Ω̃(ε)1/2

def= w̃(ε)
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and the result follows using Taylor’s theorem. ¤

This demonstrates that a simple SIB point in (1) will lead to a curve of
Hopf points in (3). It is a natural question to ask whether the same is true
of (4) where we have seen that double SIB points occur as λ varies when
ε = 0.

3.2. Symmetric Slow Subsystems. Let (x, y) ∈ Rn+m. Suppose that (4)
has a trivial equilibrium for all (λ, ε) and write the linearisation of (4) in the
form

K(λ, ε) =
1
ε




0 εIn 0
εA(λ, ε) εΘ(λ, ε) εB(λ, ε)
C(λ, ε) 0 D(λ, ε)


 .

We shall write this matrix as 1
εK1(λ, ε).

Theorem 4. Suppose that N(D(λ0, 0)) = 〈k〉 for some non-zero k ∈ Rm

and σ(D(λ0, 0)) contains no other eigenvalues of zero real part. Denote
N(D(λ0, 0)T ) = 〈u〉 and suppose δ0

def= uTD′(λ0, 0)k 6= 0. If uT k = 1 and

uTC(λ0, 0)Θ(λ0, 0)B(λ0, 0)k = ω2
1 > 0

then there is a smooth curve w 7→ (λ0(w), ε0(w)), for w ∈ (−δ, δ), such that

±i
ε0(w)

w
∈ σ(K1(λ0(w), ε0(w))).

Moreover, this represents an algebraically simple eigenvalue. Furthermore,

ε0(0) = 0, λ0(0) = λ0, lim
w→0+

ε0(w)
w4

= ω2
1

and both λ0 and ε0 are even functions.

Proof. As in Theorem 3 one can place the problem on a centre manifold.
We have

ẍ = ε(εĀ(λ, ε)x + Θ(λ, ε)ẋ + εB̄(λ, ε)α) + h1(x, ẋ, α, λ, ε) ∈ Rn(17)
α̇ = C̄(λ, ε)x + D̄(λ, ε)α + h2(x, ẋ, α, λ, ε) ∈ R(18)

where we denote

Ā(λ, ε) = A(λ, ε)− B(λ, ε)∆−1ΠC(λ0, 0), B̄(λ, ε) = B(λ, ε)k

C̄(λ, ε) = uT
[C(λ, ε)−D(λ, ε)∆−1ΠC(λ0, 0)

]
, D̄(λ, ε) = uTD(λ, ε)k.

Here Θ remains unaffected by the reduction.
In order to find purely imaginary eigenvalues of K1, make the following

replacements in (15-16)2

Ω = w2, Â Ã
(

0 I
Ā Θ

)
, B̂ Ã

(
0
B̄

)
, Ĉ Ã (C̄ 0), δ Ã D̄.

2We see, using this notation, that Ĉ(λ, ε)B̂(λ, ε) ≡ 0. This is why Theorem 3 does not
apply directly to equation (4). This property also causes double SIB points when ε = 0.
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We must now solve

0 = −δ(λ, ε) + Ω · ĈÂB̂ + O(Ω2) = −δ(λ, ε) + Ω · C̄B̄ + O(Ω2)(19)

0 = ε + Ω · ĈB̂ − Ω2 · ĈÂ2B̂ + O(Ω3) = ε− Ω2 · C̄ΘB̄ + O(Ω3)(20)

where the reference to the variables (λ, ε) is omitted for clarity. One can
solve (19-20) using the implicit function theorem near the point (λ, ε,Ω) =
(λ0, 0, 0) for λ = λ0(w) and ε = ε0(w) such that ε0(0) = 0. This gives the
existence of the Hopf curve under the further observation that for ε(w) > 0
to hold we require 0 < CΘB(λ0, 0) = ω2

1. It is clear that ε0(w)w−4 → ω2
1 as

w → 0. ¤

Corollary 2. Suppose that δ0 ·ω1 6= 0, then there is a function λ̃(·) such that
the parameterised curve {(λ0(w), ε0(w)) : w ∈ Nδ(λ0)} is locally the graph
{(λ̃(ε), ε) : ε ∈ [0, ε0)}. For ε > 0 sufficiently small, the purely imaginary
eigenvalue from Theorem 4 can be written as a function of ε, namely iw̃(ε) ∈
σ(K1(λ̃(ε), ε)) and this function satisfies

w̃(ε) = |ω1|1/2ε3/4 + O(ε5/4)

and

λ̃(ε) = λ0 + ε1/2

(
uTC(λ0, 0)B(λ0, 0)k

uTD′(λ0, 0)k|ω1|
)

+ O(ε)

as ε → 0+.

Proof. Solve (19) for λ = λ(ε, Ω) near (λ, ε,Ω) = (λ0, 0, 0) and substi-
tute this into (20) which is then solved for Ω as a function of ε using the
saddle-node bifurcation theorem. The imaginary part in question is given
by w̃(ε) = ε/

√
Ω(ε) and λ̃(ε) = λ(ε,Ω(ε)). ¤

It follows trivially that

±i
[
|ω1|1/2ε−1/4 + O(ε1/4)

]
∈ σ(K(λ̃(ε), ε))

for all small enough ε.

3.3. Conclusions. It appears that one can always solve (15-16) to give a
Hopf curve using the implicit function theorem, irrespective of any particular
structure present in the mapping K(λ, ε). However, this is clearly not the
case when the damping term Θ(λ0, 0) is absent. In this particular setting
equation (16) degenerates to ‘ε = 0’.

In particular, the system

(21) ẍ = f(x, y, λ, ε), εẏ = g(x, y, λ, ε)

cannot satisfy either Theorem 3 or 4. This is important to those electrical
engineers who view a power system as a singularly perturbed ODE which is
represented after some transient period by an index-1 DAE. Simply adding
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the parasitic εẏ term to the constraint in DAE models can, of course, dras-
tically change the nature of the dynamics, although this is sometimes per-
formed [10, 11].

For instance, the inclusion of parasitic terms introduces damping into the
system. To see this re-scale (21) and write it in the form

(22) xττ = ε2f(x, y, λ, ε), yτ = g(x, y, λ, ε).

One can use the centre manifold theorem to conclude the existence of an
invariant, slow manifold [7, 12] given by the graph

y = h(x, xτ , λ, ε).

The solution manifold of the corresponding (ε = 0) DAE subsystem of (22)
will be given, locally to some initial conditions, by a velocity-free graph

y = y(x, λ).

This yields a locally conservative reduced-order system. The presence of the
damping term xτ in h is induced solely by the parasitic terms εẏ, yet no
damping is present in the reduced-order DAE system.

4. A 3-Bus Power System

In this section we take a power system model from [16, 17] and examine
some of the dynamics which occur because of the existence of double SIB
points within the model. The ‘3-bus power system’ in question is to be
found in [17] (p.989) and can be written in the form

β̈ + cos2(α) sin(2β) = λ(23)
0 = 2 sin(2α) cos2(β)− 1.

To avoid any confusion we adopt the notation used in [17]. With the damp-
ing terms inserted (23) becomes

β̈ + δβ̇ + cos2(α) sin(2β) = λ(24)
εα̇ = 2 sin(2α) cos2(β)− 1.

In both cases the angle variables α, β lie in the unit circle, S1 = [0, 2π]/(0 =
2π).

From [17] we have taken the reactive power requirement at the load to
be Q3 = 0 and the shunt susceptance is assumed to be B = 1. The active
power at the load is P3 = 1. From the model, the difference in active power
injected into the network by the two buses is given by λ which is written
as ∆P/2 in [17]. Following Kwatny we have written α to be twice the
difference of the generator and the rest of the network phase angles. Here,
β is a combination of the voltage phase angle at the load and of the local
generator angle, measured with respect to the rest of the network. For more
information on this model [16, 17] should be consulted as there have been
several transformations applied to a higher-dimensional 3-bus power system
to bring it into this convenient form.
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Figure 1. Bifurcation diagram with λ versus α. The solid
dot is a saddle-node point and the circle is an SIB point.

We begin by finding the steady-states of (23) and therefore of those of
(24) too. These are simply the solutions of

cos2 β sin(2α) =
1
2
, sin(2β) cos2 α = λ.

This allows use to solve for λ as a function of α and therefore to obtain a
plot of the bifurcations of the system as λ changes. We find that

(25) λ2 =
2 sin(2α)− 1

4 tan2 α

for π/12 ≤ α ≤ 5π/12 and note that λ is zero on the boundary of this
interval. A saddle-node bifurcation (SNB) occurs when λ has its maximum
value, at which dλ

dα = 0. This is true if

1 + 4 sinα cos3 α− 6 sin α cosα = 0

and therefore z = cos2 α, where 1 + z(z − 1)(4z − 6)2 = 0. This is depicted
in Figure 1 where one can see a pair of saddle-node bifurcation points.

To determine the geometry of the dynamics of (23) we differentiate its
constraint to give the singular ODE

β̇ = ξ(26)

ξ̇ = λ− cos2(α) sin(2β)
α̇ cos(2α) cos β = ξ sin(2α) sinβ.

Now re-scale time according to

ds

dt
=

1
cos(2α(t)) cos β(t)
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Figure 2. Orbits of the DAE power system at λ = 0 show-
ing two pseudo-equilibria p. The two lines passing through
the points p mark the singular manifolds, S. The cross ⊗
indicates two stable equilibria.

to give the ODE

βs = ξ cos(2α) cos β(27)
ξs = (λ− cos2(α) sin(2β)) cos(2α) cos β

αs = ξ sin(2α) sin β.

The set

C =
{

(α, ξ, β) ∈ R3 : cos2 β sin(2α) =
1
2

}

is called the constraint or solution manifold for (23). This set is invariant
for both the singular ODE (26) and the smooth ODE (27).

Notice that if

(28) cos2 β sin(2α) =
1
2
, cos(2α) cos β = 0 and ξ = 0

then (27) has an equilibrium on the constraint manifold which is not an equi-
librium of the DAE (23). Note that the integral curves of (27) do coincide
geometrically with those of the DAE (23) on the constraint manifold.

Solving (28) gives the so-called pseudo-equilibrium points of (23) and we
find cosβ = ±1/

√
2 and cos(2α) = 0, whence β = ±π/4 and α = π/4. Now

cos2 β sin(2α) is constant on the orbits of (27) and therefore the unstable
and stable manifolds of the pseudo equilibria of (27) lie on the solution
manifold. It follows that these are also invariant manifolds, or simply orbits,
of the DAE (23) and determine the nature of the local dynamics of (23)
near pseudo-equilibria. One can find further information concerning the
dynamics near pseudo-equilibria in [22].
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Figure 3. The ‘lower half’ of phase space of the DAE power
system at λ = 0, as shown in Figure 2. Here α is plotted
against β. This shows the two pseudo-equilibria p and the
existence of two ‘pseudo-heteroclinic’ orbits, Γ and its reflec-
tion which connect the two pseudo-equilibria. The dotted
lines marked S denote the singular manifold and the script
S denotes a line of symmetry.

For δ 6= 0 a double SIB point occurs in (23) when an equilibrium encoun-
ters the singular manifold given by

S =
{

(α, ξ, β) ∈ R3 : cos2 β sin(2α) =
1
2
, cos(2α) cos2 β = 0

}
.

Hence all pseudo-equilibria lie in the singular manifold. Notice that the
singular manifold is simply the set of points in the constraint manifold where
one cannot use the implicit function theorem directly to solve the constraint
for α as a function of β.

Theorem 1 tells us that the hyperbolicity of eigenvalues is lost at a double
SIB point λ0 because they behave as ±O(λ− λ0)−1/2. In the power system
model (23) there is a reversible SIB point at λ0 = ±1/2. This is found by
substituting α = π/4 into the expression for λ2 given by (25).

Using this information we can draw the integral curves of (23) for different
values of λ, as shown in Figures 2 and 4. The horizontal lines in Figure 2
passing through the two pseudo equilibrium points marked ‘p’ contain all
the impasse points for (23). For background information concerning the
dynamics near impasse points see [9, 18].

One additional point to note is that the closed curve marked Γ in Figures
2 and 3 appears to form heteroclinic connections between the two pseudo-
equilibria ‘p’. In fact, Γ forms two distinct periodic orbits because the arrival
time at the pseudo-equilibria along their invariant manifolds is finite.

To see this argue as follows. Let p = (π/4, 0, π/4) be one of the pseudo-
equilibria and note that in s-time along the heteroclinic orbit, W s(p), we
have α(s) = π/4 + O(e−ls) as s → ∞. Here −l is the negative eigenvalue
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Figure 4. Phase space of the DAE power system where λ
lies between the SIB point and the SNB point. The cross
⊗ marks the two equilibria, one of which is stable and one
is a saddle. There is a homoclinic orbit connecting the sad-
dle point to itself. Notice that one of the pseudo-equilibria
marked p is a pseudo-centre. See Figure 5 for a schematic of
the ‘inner part’ of this diagram.

missing figure

associated with the linearisation of (23) at the pseudo-equilibrium. There-
fore cos(2α(s)) = sinO(e−ls) = O(e−ls) for large s > 0. Using the change in
time-scale, we know that if the orbit of some solution, ∪s(α(s), β̇(s), β(s))
say, forms the connecting orbit W s(p), then the arrival time at p from some
nearby point of the DAE (23) along this manifold is given by

T (s0) = T =
∫ T

0
dt =

∫ ∞

s0

dt

ds
ds =

∫ ∞

s0

cos(2α(s)) cos(β(s))ds.

Therefore

|T | ≤
∫ ∞

s0

| cos(2α(s)) cos(β(s))|ds ≤
∫ ∞

s0

O(e−ls)ds

which is clearly finite. Here, s0 is any large enough initial s-time. It follows
that the heteroclinic orbits of (27) in s-time become periodic orbits of (23)
in t-time which connect one component of C\S to another.

This shows us that the stable and unstable manifolds of the pseudo-
equilibria in the rescaled time-scale denoted by the variable s become two
distinct periodic orbits for the DAE in the t time-scale. This behaviour
arises because there need not be any uniqueness of solutions of (23) along
the singular manifold.

In Figure 4 there are shown two equilibria which lie on the same compo-
nent of the solution manifold C\S and there is a homoclinic orbit on this
component. This is illustrated in Figure 5. The homoclinic orbit comes
into existence at the same point as one of the equilibria passes the singular
manifold: the SIB point. When the equilibria are on different components
of the solution manifold there are no homoclinic or heteroclinic connections
between them.

In terms of the damped power system (24) we may apply Corollary 2 to
conclude that the SIB point which occurs in (23) at λ = ±1/2 implies that
for all δ 6= 0 and sufficiently small ε > 0, there are two curves of Hopf points
in (λ, ε)-space given by

λ̃±(ε) = ±1
2

(
1− ε1/2

√
2δ

+ O(ε)

)
.
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Figure 5. The ‘inner-part’ of phase space of the DAE power
system near the SIB point from Figure 4. Here α is plot-
ted against β. This shows the pseudo-equilibrium p and the
existence of a homoclinic orbit Γ1. S denotes the singular
manifold and the script S denotes a line of symmetry. The
curve Γ2 is an equilibrium-singularity connection, Γ3 reverses
the orientation of Γ2 and Γ4 is a singularity-singularity con-
nection. There is a continuum of these because p is a pseudo-
centre.

On this curve the eigenvalues of the linearisation of (24) at its equilibrium
are given by

±iω̃(ε) = ±i[(2δ)1/4ε−1/4 + O(ε1/4)].

Two of the resulting Hopf bifurcations are shown in Figure 6 and they
are seen to be subcritical. Computations done in AUTO indicate that the
branch of periodic orbits terminates in a homoclinic orbit connecting the
unstable equilibrium to itself.

In Figure 7 one can see a particular periodic solution near to the end of
the branch where (λ, ‖α‖) ' (−0.3, 1.27). It shows a solution which moves
rapidly from the unstable part to the stable part of the slow manifold. The
‘diagonal’ part of this curve lies on the folded slow-manifold and appears to
pass through the fold at the pseudo-equilibrium which is indicated by the
solid dot at (β, β̇, α) = (π/4, 0, π/4).
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