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In this paper we use a system of non-local reaction diffusion equations to study the
effect of host heterogeneity on the phenotypic evolution of a pathogen population.
The evolving phenotype is taken to be the transmission rate of the pathogen on the
different hosts, and in our system there are two host populations present.

The central feature of our model is a trade-off relationship between the transmis-
sion rates on these hosts, which means that an increase in the pathogen transmission
on one host will lead to a decrease in the pathogen transmission on the other. The
purpose of the paper is to develop a classification of phenotypic diversity as a func-
tion of the shape of the trade-off relationship and this is achieved by determining
the maximum number of phenotypes a pathogen population can support in the
long-term, for a given form of the trade-off. Our findings are then compared with
results obtained by applying classical theory from evolutionary ecology and the
more recent adaptive dynamics method to the same host-pathogen system. We find
our work to be in good agreement with these two approaches.
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1. Introduction

In Gudelj et al. (2004), motivated by the existence of sibling species among
the fungal pathogens of agricultural crops, the authors studied the evolution of
pathogen diversity in the following evolutionary host-pathogen system. Two sym-
patric crops act as hosts to a pathogen which is categorised into a number of possible
types according to its transmission rate on the two hosts. Only one of these is used
as an explicit measure of diversity, namely the transmission rate on host one, de-
noted x and taking on values in a discrete set contained within [0, 1]. This value is
termed the phenotype of the pathogen.

The underlying biological feature of the system is the following trade-off relation-
ship: pathogens with higher transmission rates on host one have lower transmission
rates on host two. In order to represent this relationship, a monotonically decreas-
ing function f(x) is used to provide the transmission rate of a pathogen on host
two directly from the value of x.

Gudelj et al. found that the number of pathogen types present and the values
of their corresponding phenotypes depend on the shape of the trade-off function f .
However, many of these results have been ascertained from numerical simulations
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conducted for particular trade-offs. In this paper we build on this work in order
to obtain a qualitative description of what form of trade-off function will ensure
the long-term presence of one, two or more phenotypes, where infinitely many are
possible in principle. This ultimately provides a classification of pathogen diversity
as a function of the trade-off relationship, something that would not be possible
using the methods of Gudelj et al. (2004).

This is an important step because the experimental literature has for a long
time acknowledged the importance of trade-offs in the evolution of host-parasite
systems. Indeed, there are an increasing number of studies conducted to identify
those components that are traded during the evolutionary process (for example
see Kraaijeveld and Godfray 1997, Boots and Begon 1993 and Messenger et al.
1999). However, the shapes of these trade-offs are extremely difficult to obtain
experimentally.

Let us now concentrate on the particular host-pathogen problem that we wish
to study and consider the system of differential equations proposed in Gudelj et al.
(2004):

Ṗi = −γPi + H1xiPi + H2f(xi)Pi, (1.1a)

Ḣ1 = r1 − µH1 −H1

∑

i

xiPi, (1.1b)

Ḣ2 = r2 − µH2 −H2

∑

i

f(xi)Pi, (1.1c)

where i is an index which counts the number of resident pathogen phenotypes
present in the system. The state variables H1 and H2 represent densities of healthy
tissue of the two host populations while Pi represents the density of host tissue
infected with a pathogen of phenotype xi. In the absence of pathogens, the host
populations are governed by a simple immigration and birth minus death process
of the form r − µH, which leads to the long-term persistence of each host. The
parameter γ denotes the disease-induced mortality rate of the host tissue and it is
assumed to be sufficiently small so that a non–trivial, positive steady state of (1.1)
exists and is stable.

Equation (1.1) possesses a discrete number of phenotypes and the rules which
describe the phenotypic mutation process and the conditions that define the fate
of each mutant can be found in Geritz et al. (1998), this is known as the adap-
tive dynamics method. There are many other ways of representing mutations in
phenotypic space and some examples can be found in Sasaki and Godfray (1999),
Bowers and Hodgkinson (2001), Bonhoeffer and Nowak (1994) and more recently
in Calsina and Cuadrado (2004). Calsina and Cuadrado (2004) consider the evolv-
ing trait to be a continuous variable and mutations are included by the use of an
convolution operator with a mutation kernel giving the probability distribution of
the offspring phenotype, for a given parental phenotype. This yields a system of
integro-differential equations and the authors relate their findings to the discrete
trait approach used in the adaptive dynamics method.

In Calsina and Perelló (1994), Calsina et al. (1995), Tsmiring and Levine (1996)
and Saldaña et al. (2003), the authors use an approach where a diffusion operator
represents phenotypic mutations. At an informal level this corresponds to apply-
ing a continuum limit to (1.1) in the case where mutations are given by nearest-
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phenotypic-neighbour connections. We also adopt this strategy and show that, in
cases where a comparison is appropriate, our results agree with the findings of
Gudelj et al. (2004) where the adaptive dynamics method is used, as well as many
of the conclusions of classical evolutionary ecology (see Levins 1968 and Lawlor and
Maynard-Smith 1976). Note that while classical theory assumes that populations
evolve to maximise their fitness, neither the model (1.1) nor the one presented in
this paper possess any global notion of fitness. Moreover, the methodology used in
Gudelj et al. that is applied to (1.1) refers to a local notion of fitness of a phenotype,
while there no concept of fitness is used in the remainder of this paper.

2. A non-local PDE

Let us begin this section with the formal definition of a trade-off function: if
f : [0, 1] → [0, 1] satisfies

(F1) f ∈ C2[0, 1], f(0) = 1, f(1) = 0, f ′(x) < 0 ∀x ∈ (0, 1).

then we call it a trade-off. From the mean-value theorem there is a θ ∈ (0, 1)
such that f ′(θ) = −1 and we also make the following restriction on the oscillatory
properties of f :

(F2) the number Θ := #{θ ∈ (0, 1) : f ′(θ) + 1 = 0} is finite and #{x ∈ [0, 1] :
f ′′(x) = 0} = Θ− 1, where a hash (#) symbol denotes set cardinality.

If Θ = 1 then f is concave or convex. If Θ = 2 then we shall say that f is sigmoidal
and if Θ ≥ 3 then f is said to be a staircase. A sigmoidal trade-off is said to be
convex-concave if there are intervals I1 = [0, a) and I2 = (a, 1] such that f is convex
on I1 and concave on I2. A concave-convex sigmoidal trade-off is similarly defined.

We now propose a non-local PDE system as our model of evolution by natural
selection. Mutations in phenotypic space are represented by a diffusion process with
a constant diffusion coefficient ε, which is motivated directly by the work of Calsina
and Perelló (1995) and Calsina et al. (1995). The system represents the equations
of motion for the probability density of the phenotype resident in the pathogen
population as a function of evolutionary time.

Let us denote the state variables Hi(t) for the density of host i, for i ∈ {1, 2},
that is susceptible to infection at time t. Also P (x, t) is the total density of hosts
(both 1 and 2) infected with a pathogen with phenotypic trait x. Consequently,
H1(t) + H2(t) +

∫ 1

0
P (x, t)dx represents total biomass at time t. With this format

we propose the following model:

(HP )





Pt = εPxx − γP + H1xP + H2f(x)P,

Ḣ1 = r1 − µH1 −H1

∫ 1

0
xP (t, x)dx,

Ḣ2 = r2 − µH2 −H2

∫ 1

0
f(x)P (t, x)dx,

together with Neumann boundary conditions Px(0, t) = Px(1, t) = 0 such that
H1(0) ≥ 0,H2(0) ≥ 0, where P (x, 0) = P0(x) ∈ C0[0, 1] and P0(x) ≥ 0 for all
x ∈ [0, 1]. The remaining parameters in (HP) are defined as in (1.1).

Although the host dynamics of (HP) are very simple, namely when P ≡ 0, the
results of this paper generalise to cover other types of interaction. We have used
the particular form of (HP) in order to keep the exposition as straightforward as
possible.
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4 I. Gudelj and others

(a) Species

So as not to confuse terminology surrounding the term species with any currently
in use we shall use the following, less ambitious terminology.

Definition 1. By the term modal phenotype at time t for a solution of (HP) we
understand a point x ∈ [0, 1] such that Px(x, t) = 0 and Pxx(x, t) < 0. A modal
phenotype x ∈ (0, 1) is said to be a generalist and a modal phenotype x ∈ {0, 1} is
said to be a specialist.

We consider the term strategy to be a synonym for phenotype.

(b) Critical Pathogenicity

Let us define some terminology. If X is any space of functions on [0, 1] containing
all continuous functions, a subscript zero, as in X0 denotes the fact that functions
in X vanish at zero and one. Now define the Banach spaces Y = {u ∈ C2[0, 1] : u′ ∈
C1

0 [0, 1]}, X := C0[0, 1] and Z := X × R2 that will be needed, moreover Z+ will
denote the cone of non-negative functions in Z. The Sobolev spaces W k,p(0, 1) =
{u ∈ Ck−1[0, 1] : u(k) ∈ Lp(0, 1)} for integer k, p ≥ 1 will be used on occasion and
we shall write Hk(0, 1) for W k,2(0, 1). Here, u(k) denotes the k-th weak derivative
and the operation of differentiating twice will sometimes be represented by the
operator ∆ : u 7→ u′′, as in ∆ : W k+2,p(0, 1) → W k,p(0, 1) and ∆ : Y → X.

By γ0, we denote the unique eigenvalue γ ∈ R of the problem of finding a
φ ∈ H2(0, 1) such that φ′ ∈ H1

0 (0, 1) and

Lφ := εφ′′ + (r1x + r2f(x))φ/µ = γφ, φ > 0. (2.1)

Clearly γ0 is positive and by well-known properties of eigenvalues of elliptic prob-
lems, it is an algebraically simple eigenvalue. The value γ0 will be called the crit-
ical pathogenicity. Let φ0 denote the eigenfunction corresponding to γ0 such that∫ 1

0
φ2

0dx = 1. Finally, let φ1 ∈ H2(0, 1) be the unique positive function that satisfies
φ′1 ∈ H1

0 (0, 1),
∫ 1

0
φ2

1dx = 1 and εφ′′ + r1xµ−1φ = γ1φ, for some eigenvalue γ1 > 0.
Of course, the value of γ0 depends on f and we may write γ0(f) to emphasize this.
It is also true that γ0(f) > γ1 if f > 0 and that γ0(0) = γ1.

The existence and positivity of solutions of (HP) is a simple consequence of the
maximum principle and the theory of analytic semigroups, and the following lemma
gives some simple boundedness properties which show that the hosts are persistent.

Lemma 2.1. Suppose that (P0, h1, h2) ∈ Z+ represents an initial datum for (HP).
There is a unique non-negative solution of (HP), (P,H1,H2) ∈ C1((0,∞), Z+)
with this initial datum. This solution satisfies

Hi(t) ≤ hie
−µt + ri(1− e−µt)/µ, (for i = 1, 2). (2.2)

If we define m := supt≥0(H1(t) + H2(t)) (which is finite a-priori), then there is an
upper bound

∫ 1

0

P (x, t)dx ≤ e−γt

∫ 1

0

P0(x)dx +
r1 + r2

γ
+ m + h1 + h2 (2.3)

Article submitted to Royal Society



Classifying Pathogen Diversity 5

for all t > 0, so that total biomass is bounded above. If M := supt≥0

∫ 1

0
P (x, t)dx

(which is finite a-priori) then there is a lower bound

hie
−(M+µ)t +

ri

M + µ
(1− e−(M+µ)t) ≤ Hi(t), i = 1, 2.

Consequently, the total biomass is eventually bounded below:

lim inf
t→∞

(H1(t) + H2(t)) ≥ r1 + r2

M + µ
.

Proof. The existence, uniqueness and positivity property is a simple excercise in
well known theory of analytic semigroups (see Henry 1981, Theorem 3.3.3, p.54 and
Exercise 8, p.61).

To prove (2.2), simply note that Hi satisfies the inequality Ḣi ≤ ri−µHi, which
integrates to give the desired bound. To prove (2.3), write n(t) =

∫ 1

0
P (x, t)dx and

note that

ṅ + γn = r1 − µH1 − Ḣ1 + r2 − µH2 − Ḣ2 ≤ r1 − Ḣ1 + r2 − Ḣ2,

and this inequality can be integrated to show that

n(t) ≤ e−γtn(0) +
r1 + r2

γ
+ γe−γt

∫ t

0

(H1(s) + H2(s))eγsds + h1 + h2,

≤ e−γtn(0) +
r1 + r2

γ
+ m + h1 + h2.

To prove (2.4) for i = 1, note that 〈x, P (x, t)〉 ≤ n(t) ≤ M for some M > 0
depending on initial conditions and therefore

Ḣ1 = r1 − 〈x, P 〉H1 − µH1 ≥ r1 −MH1 − µH1.

This can be integrated to give

H1(t) ≥ h1e
−(M+µ)t +

r1

M + µ
(1− e−(M+µ)t).

The bound on H2 is similarly obtained.

The following lemma shows that if the pathogenicity has a greater value than
the critical pathogenicity, the fate of all solutions of (HP) is to converge to the
trivial steady-state whereby the pathogen distribution is the zero function.

Lemma 2.2. The set Z := {(P,H1,H2) ∈ Z+ : P = 0} is invariant for (HP) and
any orbit in Z converges to (0, r1/µ, r2/µ) as t →∞. If γ > γ0 then any solution of
(HP) converges eventually exponentially to (0, r1/µ, r2/µ) as t → ∞ in the norm
on Z given by ‖(P,H1,H2)‖ =

∫ 1

0
φ0|P |dx + |H1|+ |H2|.

Proof. The first part of the lemma is obvious, so let us suppose that γ > γ0 and
define the functional V (t) =

∫ 1

0
φ0(x)P (x, t)dx, evaluated along a solution of (HP).

Now V is differentiable for t > 0 and

V̇ =
∫ 1

0

φ0(εPxx + P (−γ + xH1 + f(x)H2))dx,
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=
∫ 1

0

Pφ0(γ0 − γ + x(H1 − r1/µ) + f(x)(H2 − r2/µ))dx,

and by Lemma 2.1, for every sufficiently small η > 0, there exists a T > 0 such
that H1(t) < r1/µ + η and H2(t) < r2/µ + η, for all t > T . Consequently, there
exists an α < 0 such that V̇ < αV , for all t ≥ T and therefore V (t) < eα(t−T )V (T )
eventually. The result now follows.

3. Classifying Equilibrium States

Consider the equilibrium problem of (HP):

0 = εP ′′ − γP +
r1xP

µ + 〈x, P 〉 +
r2f(x)P

µ + 〈f, P 〉 , (3.1)

subject to the restrictions P > 0, P ′(0) = P ′(1) = 0. Throughout the paper we
shall make use of the function

r := ε
P ′′

P
= γ − r1x

µ + 〈x, P 〉 −
r2f(x)

µ + 〈f, P 〉 , (3.2)

defined whenever P is a positive solution of (3.1).

Lemma 3.1. If (F1) holds and f ′′(x) > 0 for all x ∈ [0, 1] (f is strictly convex)
then

∫ 1

0
r(x)dx ≥ 0, r is concave and any zeros of r, of which there is at least one

in (0, 1) and at most two in [0, 1], are necessarily transverse:

x ∈ [0, 1], r(x) = 0 ⇒ r′(x) 6= 0.

Moreover, r′ has at most one zero in [0, 1] and it is transverse, so that r is either
monotonic on [0, 1] or has exactly one local extremum in [0, 1] which is a global
maximum.

Proof. Since r′′(x) = − r2f ′′(x)
µ+〈f,P 〉 < 0, we see that r is strictly concave and so has at

most two zeros. However, since P ′(0) = P ′(1) = 0, we find P ′′(x0) = 0 for some
x0 ∈ (0, 1), whence r(x0) = 0. Also

∫ 1

0
r(x)dx =

∫ 1

0
εP ′′/Pdx = ε

∫ 1

0
(P ′/P )2dx ≥ 0.

The remainder of the proof is elementary and uses the mean-value theorem and the
convexity of f .

Similarly, we have the following.

Lemma 3.2. If (F1) holds and f ′′(x) < 0 for all x ∈ [0, 1] (f is strictly concave)
then

∫ 1

0
r(x)dx ≥ 0, r is convex and any zeros of r, of which there is at least one

in (0, 1) and at most two in [0, 1], are necessarily transverse. Moreover, r′ has at
most one zero in [0, 1] and it is transverse, so that r is either monotonic on [0, 1]
or has exactly one local extremum in [0, 1] which is a global minimum.

Denote the right-hand side of (3.1) by the smooth operator F (P, γ), where
F : Y × R → X, then we can find a δ > 0 such that F is an analytic mapping on
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the open set K = {(P, γ) ∈ Y × R : γ > −δ, P À −δ}, where P À −δ means that
P (x) > −δ for all x ∈ [0, 1]. Let us also define a solution set,

S = {(P, γ) ∈ Y × R : F (P, γ) = 0},
a set of positive solutions, S+ = {(P, γ) ∈ S : γ > 0, P > 0}, and a set of non-trivial
solutions N = {(P, γ) ∈ S : P 6= 0}.

Note that if f ∈ C2 as per assumption (F1) and P is a solution of (3.1), then
P ∈ C4 immediately follows. According to Lemma 2.2, there can be no positive
solution of (3.1) for γ > γ0; we now sketch a proof that in fact γ = γ0 is a global
bifurcation point to positive solutions of (3.1).

Let us first state a preliminary lemma.

Lemma 3.3. Suppose that (F1) holds, (P, γ) ∈ N and P ≥ 0 then (P, γ) ∈ S+.
More generally, if (P, γ) ∈ N then the zeros of P are transverse and therefore finite
in number. Consequently, if C ⊂ N is a connected set that satisfies C ∩ S+ 6= ∅,
then C ⊂ S+.

Proof. Suppose that (P, γ) ∈ N satisfies P (x0) = P ′(x0) = 0 for some x0 ∈ [0, 1],
then define numbers i1 = r1/(µ+ 〈x, P 〉) and i2 = r2/(µ+ 〈f, P 〉). It follows that P
is a solution of an ordinary differential equation εP ′′+(−γ+i1x+i2f(x))P = 0 with
initial condition P (x0) = P ′(x0) = 0, but then P (x) ≡ 0. This is a contradiction
since (P, γ) ∈ N and therefore no such x0 exists. This immediately implies that
non-negative solutions of (3.1) are strictly positive.

Now suppose that (P, γ) ∈ C ∩ S+ and define a mapping i : C → {0} ∪ N by
i(P, γ) = #{x ∈ [0, 1] : P (x) = 0}. Then i is continuous on C by the transversality
of zeros of P and integer valued. It is locally constant and therefore constant on
the connected set C, so that i(C) = 0 as C contains an element also in S+. Hence
C ⊆ S+. 2

Lemma 3.4. For each γ ∈ (0, γ0), the Neumann problem (3.1) has at least one
solution. If we denote a locus of such solutions by Pγ , then

lim
γ→γ0

‖Pγ‖C2 = 0 and lim
γ→0

‖Pγ‖L1 = ∞.

If C(γ0) ⊂ N is the maximal connected subset of N which contains the point
(P, γ) = (0, γ0) in its closure, then C(γ0) ⊂ S+.

Proof. (sketch) First, note that F (0, γ) ≡ 0. Now, because dP F (0, γ)[h] = Lh− γh
where L is defined in (2.1) and d2

PγF (0, γ)[h, λ] = −λh, by the defining property
of γ0 one may apply the theorem on bifurcation from a simple eigenvalue to obtain
the existence of a local bifurcation. The Crandall and Rabinowitz global alternative
(see Zeidler 1986) can then be used to demonstrate the existence of C(γ0) in S+.
We omit the details as they are straightforward.

Integrating (3.1) over [0, 1] shows that γ > 0 must hold for any non-negative
solution which is not identically zero. The second part then follows from a continuity
argument because if there is a positive sequence (γn) such that γn → 0 and (Pn) is
a sequence of positive solutions of (3.1) which is L1-bounded, the equation

−εP ′′n + αPn = (α− γn)Pn +
r1xPn

µ + 〈x, Pn〉 +
r2f(x)Pn

µ + 〈f, Pn〉 , (P ′n(0) = P ′n(1) = 0),
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(where α is a constant chosen to ensure the invertibility of the linear operator
−ε∆ + αI independently of n in various spaces) yields a W 2,1-bound, hence a C1

bound and using (F1), a C3-bound follows for (Pn) that is independent of n. As
a result, there is a subsequence of (Pn) that converges in C2 to a non-negative
solution of (3.1) when γ = 0, which is a contradiction as none exist.

(a) Steep Trade-Offs

The following result shows that if the trade-off function is sufficiently steep in
the sense of having most of its mass concentrated around x = 0, then there is
only one solution of (3.1) and it is close (in a C1 sense) to a strictly monotonic
increasing function on (0, 1) and so its mass is largely concentrated near x = 1.
This corresponds to solutions of (HP) that are close to one that supports only one
modal phenotype at the specialist point x = 1. Such behaviour was identified by
Gudelj et al. (2004) (Fig. 3(b), p. 2190) using the adaptive dynamics approach and
so we ought to expect to observe this result in (HP).

Theorem 3.5. Suppose that γ < γ1. There is a ρ > 0 such that if f is any trade-
off function satisfying

∫ 1

0
f(x)dx ≤ ρ, then there is exactly one positive solution

P (= P (f)) of (3.1). Moreover, P (f) → p in H2(0, 1) (and hence in C1[0, 1]) as∫ 1

0
f(x)dx → 0 where p is the strictly monotonic increasing function on (0, 1) that

satisfies (3.1) with f = 0.

Proof. Fix γ < γ1 (≤ γ0(f)) and first consider an auxiliary problem.

Claim: Under the assumptions of the theorem, the problem

0 = εp′′ − γp +
r1xp

µ + 〈x, p〉 , p ∈ Y, p > 0, (3.3)

obtained by setting f = 0 in (3.1) has a unique positive solution and it is strictly
monotonic increasing on (0, 1).

Proof. (of claim) The existence part of this claim follows from Lemma 3.4. This
shows that (3.3) has a global bifurcation to a branch of positive solutions emanating
from the trivial solution at γ = γ1 and that 0 < γ < γ1 holds along this branch.

The uniqueness part of the claim follows because if (3.3) has two positive solu-
tions p, q > 0 and we consider their Wronskian w := p′q − pq′, then

εw′ =
r1xpq 〈x, p− q〉

(µ + 〈x, p〉)(µ + 〈x, q〉) .

Now w(0) = w(1) = 0 and so w′(x1) = 0 follows for some x1 ∈ (0, 1) and therefore
〈x, p− q〉 = 0, so that w(x) ≡ 0. From this it follows easily that p = q.

The monotonicity part of the claim is proven as follows. Since p′(0) = p′(1) = 0
there is an x0 ∈ (0, 1) such that p′′(x0) = 0 and therefore

γp(x0) =
x0r1p(x0)
µ + 〈x, p〉 , p(x0) > 0.

This implies x0 = γ(µ + 〈x, p〉)/r1 must be the unique point in (0, 1) where p′′ can
be zero. If p′(x′0) = 0 were true for some x′0 ∈ (0, 1), then there would be two points
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in (0, 1) where p′′ was zero, one in (0, x′0) and one in (x′0, 1). This contradiction
ensures that no such x′0 exists. Since εp′′(0) = γp(0) > 0 it follows that x = 0 is
a local minimum for p, consequently p must be strictly monotonic increasing on
(0, 1).

Now for the proof of the theorem. Let us denote the solution of (3.3) by p and
define the operator N : L2(0, 1)×H → L2(0, 1) by

N(f, P ) := εP ′′ − γP +
r1xP

µ + 〈x, P 〉 +
r2f(x)P

µ + 〈f, P 〉 ,

where H := H2(0, 1) ∩ {u ∈ C1[0, 1] : u′(0) = u′(1) = 0} is a closed subspace
of H2(0, 1). Now N is a C1 mapping and from the above claim N(0, p) = 0, but
p ∈ H satisfies p ∈ Y by a simple regularity argument and so provides the only
solution of N(0, P ) = 0. Moreover, the Fréchet derivative of N with respect to P
at (f, P ) = (0, p) is

dP N(f, P )[Q] = εQ′′ − γQ +
r1xQ

µ + 〈x, P 〉 +
r2f(x)Q

µ + 〈f, P 〉
− r1xP

(µ + 〈x, P 〉)2 〈x,Q〉 − r2f(x)P
(µ + 〈f, P 〉)2 〈f(x), Q〉 ,

whence

dP N(0, p)[Q] = εQ′′ − γQ +
r1xQ

µ + 〈x, p〉 −
r1xp

(µ + 〈x, p〉)2 〈x,Q〉 .

We may write dP N(0, p)[Q] = AQ−〈x,Q〉 g(x), where g is the smooth positive
function r1xp/(µ + 〈x, p〉)2 and A is a self-adjoint, second-order linear differential
operator such that Ap = 0. Since A is a Fredholm operator of index-0, so too is
dP N(0, p) as it is a rank one perturbation of A and to show that this derivative is
an isomorphism we only need prove injectivity. Now, dP N(0, p)[Q] = 0 yields

0 =
∫ 1

0

p(AQ− 〈x,Q〉 g)dx =
∫ 1

0

(Ap)Q− 〈x, Q〉 pg)dx = −〈x,Q〉
∫ 1

0

pgdx.

As a result, 〈x,Q〉 = 0 and therefore AQ = 0 follows, from where Q = αp for
some real constant α and the simplicity of the null-space of A. The same integral
identity yields α = 0 and we deduce that dP N(0, p) is an isomorphism from H to
L2, so that we can apply the implicit function theorem to solve N(f, P ) = 0 locally
to (0, p) for P = P (f).

Local uniqueness is thus established, but for global uniqueness suppose that
there are two distinct solutions of (3.1) P 1

n and P 2
n say, that are found for f = fn

where
∫ 1

0
fn(x)dx → 0 as n → ∞. Note that ‖fn‖Lp ≤

(∫ 1

0
fn(x)dx

)1/p

holds by
(F1) and so (fn) tends to zero in each Lp-space for p ≥ 1.

Let P be a solution of (3.1). By integrating over [0, 1] the f -independent L1-
bound

∫ 1

0
P (x)dx ≤ (r1 + r2)γ−1 holds. Integrating from 0 to z ∈ (0, 1) we obtain

∣∣∣∣−εP ′(z) + γ

∫ z

0

P (x)dx

∣∣∣∣ =
∣∣∣∣
∫ z

0

−εP ′′ + γP dx

∣∣∣∣ ≤
∫ 1

0

r1xP

µ + 〈x, P 〉 +
r2f(x)P

µ + 〈f, P 〉dx
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10 I. Gudelj and others

which is bounded above by r1 + r2. The elementary inequality ||x| − |y|| ≤ |x− y|
now gives ∣∣∣∣|εP ′(z)| −

∣∣∣∣γ
∫ z

0

P (x)dx

∣∣∣∣
∣∣∣∣ ≤ r1 + r2,

as a result |P ′(z)| ≤ 2(r1 + r2)ε−1 and since P (x) − P (y) =
∫ y

x
P ′(z)dz, we find

|P (x)| ≤ |P (y)|+ 2(r1 + r2)ε−1|x− y|. Integrating this gives

|P (x)| ≤
∫ 1

0

|P (y)|dy + 2(r1 + r2)ε−1

∫ 1

0

|x− y|dy,

so that ‖P‖C0 ≤ (r1 + r2)(γ−1 +4ε−1). Choosing an α ∈ R such that −ε∆+γ +α :
H → L2(0, 1) is an isomorphism, a solution P of (3.1) satisfies

‖P‖H2 ≤ ‖(−ε∆ + γ + α)−1‖BL(L2,H)

∥∥∥∥
r1xP

µ + 〈x, P 〉 +
r2f(x)P

µ + 〈f, P 〉 + αP

∥∥∥∥
L2

≤ ‖(−ε∆ + γ + α)−1‖BL(L2,H)(α + (r1 + r2)µ−1)(r1 + r2)(γ−1 + 4ε−1)

where we have used 0 ≤ f(x) ≤ 1 that comes from (F1).
As H is a Hilbert space we can extract weakly convergent subsequences so that

P 1
n ⇀ P 1 and P 2

n ⇀ P 2 in H as n → ∞ for some P 1, P 2 ∈ H and by compact
embedding results, we can choose a new subsequence if necessary to ensure that
P i

n → P i strongly in H1(0, 1) as n →∞. Since fn → 0 in L2, it follows from (3.1)
that

ε(P i
n)′′ = γP i

n −
r1xP i

n

µ + 〈x, P i
n〉
− r2fn(x)P i

n

µ + 〈f, P i
n〉
→ γP i − r1xP i

µ + 〈x, P i〉
in L2 for each i = 1, 2. As a result P i

n → P i strongly in H2(0, 1) and because of
the continuity of N : L2(0, 1)×H → L2(0, 1), P 1 and P 2 must both be solutions of
N(f, P ) = 0 when f = 0. But then P 1 = P 2 and it immediately follows from the
previously proven local uniqueness result that P 1

n = P (fn) = P 2
n for all sufficiently

large n as both sequences must eventually lie in H-neighbourhoods of p.

One could restrict the trade-off further in the statement of Theorem 3.5 if we
wished in such a way that the resulting operator P (f) would yield monotonic solu-
tions of (3.1), rather than solutions that are C1-close to being monotonic. However,
we have not done this for brevity.

4. Convex and Concave Trade-Offs

Let f ∈ C2[0, 1] and P ∈ Y ∩ C4[0, 1] be a corresponding positive solution of
(3.1). In Gudelj et al. (2004), the authors deduced that the convexity or concavity
properties of particular trade-offs resulted in the presence of one or two pathogen
strains. The purpose of this and the following section is to use the properties of
the function r defined in (3.2) to deduce how many modal phenotypes a solution
of (3.1) can support. Indeed, we deduce a similar result.

Lemma 4.1. Assuming (F1) and f ′′(x) 6= 0 for all x ∈ [0, 1] (so that (F2) holds)
then any solution of (3.1) has at most three distinct local extrema in [0, 1]. Conse-
quently, there is at most one local extremum of such a solution in (0, 1).
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Proof. Suppose that a solution P of (3.1) has four, or more, local extrema 0 = x1 <
x2 < x3 < x4 = 1, so that P ′(x) vanishes at all of these points. This yields three
zeros of P ′′ in (0, 1) and therefore r too has three zeros. Now r′(x) has at most one
zero since

r′(x) = − r1

µ + 〈x, P 〉 −
r2f

′(x)
µ + 〈f, P 〉 (4.1)

and f ′ is monotonic, a contradiction. Since the boundary conditions on P are Neu-
mann, the boundary points provide two local extrema.

It immediately follows from Lemma 4.1 that any steady-state solution of (HP) has
either one modal phenotype, which we call monomorphism, or two modal pheno-
types, termed dimorphism. The manner in which monomorphism and dimorphism
occurs when f ′′(x) 6= 0 is quantified in the following two propositions.

Proposition 4.2. If (F1) holds and f ′′(x) > 0 for all x ∈ [0, 1] then any solution
of (3.1) is either monotonic or has a unique global minimum and two local maxima
at x = 0 and x = 1.

Proof. By Lemma 4.1, either there exists an x0 ∈ (0, 1) such that P ′(x0) = 0 or
there does not. In the latter case P is monotonic, so let us suppose that such an x0

exists and note that it must be unique by Lemma 4.1. From Lemma 3.1 there are
four cases to consider:

1. r has two zeros in (0, 1),
2. r has one zero in (0, 1) and r(0) = 0, r(1) 6= 0,
3. r has one zero in (0, 1) and r(0) 6= 0, r(1) = 0 and
4. r has one zero in (0, 1) and r(0) 6= 0, r(1) 6= 0.
In case (1), since f is convex r is concave and therefore has sign pattern −+−

on [0, 1], as shown in the left-hand, topmost diagram of Figure 1. Suppose that
r(x) > 0 on an interval I ⊂ (0, 1) and r is zero on ∂I, if x0 6∈ I then P ′′ must
vanish outside I, and therefore so too must r. This contradiction ensures that
x0 ∈ I. Since sgn(P ′′(x)) = sgn(r(x)), we see that P ′(x0) = 0 and P ′′(x0) > 0, so
that x = x0 is a local minimum for P . Since P is monotonic on (0, x0) and (x0, 1),
P must have a global minimum at x = x0. The boundary conditions ensure that P
has two local maxima at the boundary of [0, 1].

In cases (2-4), the mean-value theorem ensures that P ′ cannot have a zero in
(0, 1) and P is therefore monotonic on (0, 1).

Proposition 4.3. If (F1) holds and f ′′(x) < 0 for all x ∈ [0, 1] then any solution
of (3.1) is either monotonic or has a unique global maximum in (0, 1) and two local
minima at x = 0 and x = 1.

Proof. Using Lemma 3.2, the proof is entirely analogous to that of Proposition 4.2.
The only possible non–monotonic solution is illustrated in Figure 2.

(a) Phenotypic Structure as ε → 0

In this section we perform an asymptotic analysis to locate the modal phenotype
of (3.1) in the case where the trade-off function f is concave. We concentrate on
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12 I. Gudelj and others

Figure 1. The horizontal axis is x in both left and right-hand figures. The only possible
non-monotonic shape for a solution of (3.1) when f is convex is shown in the topmost
diagram (two specialist phenotypes). Also, r is shown in the left-hand figures (the thick
black line denotes zero) and the corresponding solution P in the right-hand figures.

0

0

0

0

0

0

P(x)r(x)

x

x

Figure 2. The only possible non-monotonic shape for a solution of (3.1) when f is
concave, illustrating a unique generalist evolutionary stable strategy. (see also Figure 1)

P(x)r(x)

x

x
0

0

a specific form of trade-off but, provided f is smooth, our analysis can be carried
out for more general trade-off functions. We therefore have in mind equation (3.1)
where

f(x) = 1− xα, for α > 1.

It is helpful to define new constants Γ1 and Γ2 by

Γ1 :=
r1

µ + 〈x, P 〉 and Γ2 :=
r2

µ + 〈f, P 〉 ,
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so that (3.1) becomes

εP ′′(x)− (γ − Γ1x− Γ2f(x))P (x) = 0. (4.2)

We are taking r1, µ and r2 as given, but Γ1 and Γ2 are not; equation (4.2) is
essentially a linear problem, but the nonlinearity will arise when we have to fix the
values of Γ1 and Γ2.

From the results obtained in §3 in the case of concave trade-offs, we anticipate
that the solution of (4.2) is characterized by a bump centered at some point inside
[0, 1]. Therefore we start by defining the co-ordinate X given by

x = x0 + ε1/4X;

we are expecting the solution to be concentrated in a layer of width O(ε1/4), but
we do not yet know where, so x0 is unknown and is to be found in the course of
the following analysis.

Let us expand formally

P = P0(X) + ε1/4P1(X) + ε1/2P2(X) + O(ε3/4), (4.3)

Γ1 = Γ10 + ε1/4Γ11 + ε1/2Γ12 + O(ε3/4), (4.4)

Γ2 = Γ20 + ε1/4Γ21 + ε1/2Γ22 + O(ε3/4), (4.5)

as we are expecting to obtain the elements of (4.2) in powers of ε1/4. Suppose also
that f(x) has a well-behaved Taylor series expansion about x0, so we write

f = f0 + ε1/4Xf ′0 + ε1/2X2f ′′0 /2 + O(ε3/4),

where f0 = f(x0), f ′0 = f ′(x0) and f ′′0 = f ′′(x0).
An essential point is to recognise that the double derivative term in (4.2) is

now formally O(ε1/2) (when the multiplying ε is taken into account) and we can
then start to fix various constants appropriately. It follows that the expression
γ − Γ1x− Γ2f(x) must vanish at O(1) and O(ε1/4) and for this we require

O(1) : γ − Γ10x0 − Γ20f0 = 0, (4.6a)

O(ε1/4) : Γ10 + Γ20f
′
0 = 0 and Γ11x0 + Γ21f0 = 0. (4.6b)

Note that the second relation in (4.6b) is a higher-order effect which we shall not
need again.

Taking the O(ε1/2) terms in equation (4.2) we obtain the expression

d2P0

dX2
−

[
−1

2
f ′′0 X2Γ20 − (Γ11 + Γ21f

′
0)X − (Γ22f0 + Γ12x0)

]
P0 = 0.

Let us define
λ2 := −Γ20f

′′
0 /2,

which is positive owing to the concavity of f(x) and note that we may translate X
by defining X = X̂ +k, where k ∈ R is a constant chosen so that the linear term in
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14 I. Gudelj and others

the latter equation is removed. Details of the constant shift are not important for
the leading-order analysis, but what is left is the determining equation

d2P0

dX̂2
−

[
λ2X̂2 − γ̂

]
P0 = 0, (4.7)

where γ̂ is some constant that depends on the coefficients in the expansions of Γ1

and Γ2 in (4.4) and (4.5). Now we would like solutions of this equation that decay
away from x0, that is as X̂ → ±∞. This is perfectly feasible as the equation is just
a scaled parabolic cylinder problem, the first solution of which is

P0(X̂) = c exp(−λ̂X̂2/2),

for an appropriate λ̂ and any constant c ∈ R. In determining the value of λ̂, a
further restriction must be imposed on the coefficients in (4.4) and (4.5) because
λ + γ̂ must hold for exp(−λ̂X̂2/2) = 0 to be a solution of (4.7).

Having identified the leading order eigenfunction, the stage is now set for us to
tie down the actual location of the bump. Although we have not been concerned
about the scaling of the eigenfunction yet, it is at this point that we observe that
it must be of size O(ε−1/4) as it occupies a zone of width O(ε1/4) and we suspect
that the overall integral of P is O(1). Suppose that

∫ 1

0

P (ξ)dξ = A;

then as P is concentrated around x0, we find at leading order that
∫ 1

0

ξ P (ξ)dξ ≈ Ax0 and
∫ 1

0

f(ξ)P (ξ)dξ ≈ f0A.

Consequently we deduce that Γ10 = r1/(µ+A x0) and Γ20 = r2/(µ+f0A). Equation
(4.6b) now gives

r1

µ + Ax0
+

r2

µ + Af0
f ′0 = 0, (4.8)

and (4.6a) tells us that

γ − x0r1

µ + Ax0
− f0r2

µ + Af0
= 0. (4.9)

Thus we have found that for a given concave function the eigensolution is con-
centrated in a thin layer around x = x0. This point is determined as the solution of
(4.8-4.9) (for given r1, r2 and f(x), the only unknowns are x0 and A). The eigen-
solution itself is a Gaussian profile whose decay rate λ̂ is determined as a function
of the underlying trade-off f(x).

5. Sigmoidal and Staircase Cases

Lemma 5.1. If (F1) and (F2) hold with Θ = 2, then any solution of (3.1) has at
most four distinct local extrema in [0, 1]. Consequently, there are at most two local
extrema of such a solution in (0, 1).
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Proof. Suppose that a solution P of (3.1) has five, or more local extrema 0 = x1 <
x2 < x3 < x4 < x5 = 1, so that P ′(x) vanishes at all of these points. This yields
four zeros of P ′′ in (0, 1) and therefore r too has four zeros from which it follows
that r′ has three zeros in (0, 1). From (4.1) it follows that f ′′ has two zeros in (0, 1),
a contradiction. Since the boundary conditions on P are Neumann, the boundary
points provide two local extrema.

Lemma 5.2. If (F1) and (F2) hold with Θ = 2, then r has at least one zero in
(0, 1) and at most three zeros in [0, 1] counted according to multiplicity. Moreover,
r′ has at most two zeros in [0, 1] counted according to multiplicity, so that r is
either monotonic, has exactly one local extremum in [0, 1] or has two local extrema
in [0, 1].

Proof. Since P ′(0) = P ′(1) = 0, P ′′(x0) for some x0 ∈ (0, 1), whence r(x0) = 0.
Now suppose that r has four zeros in [0, 1], 0 ≤ x1 < x2 < x3 < x4 ≤ 1. This yields
three zeros of r′ in (0, 1) and consequently two zeros of r′′ in (0, 1). Therefore it
follows that f ′′ has two zeros in (0, 1), a contradiction.

The same contradiction is obtained if r has two non-transverse zeros, so that
r has at most three zeros counted according to multiplicity and similar reasoning
can be used to deduce that r′ has at most two zeros, either two transverse zeros or
one double zero.

Proposition 5.3. If (F1) and (F2) hold with Θ = 2 and the trade-off f is sigmoidal
convex-concave, then any solution of (3.1) is either

(i) monotonic,

(ii) has a unique global minimum and two local maxima at x = 0 and x = 1,

(iii) has a unique global maximum and two local minima at x = 0 and x = 1 or

(iv) has one local maximum and one local minimum in (0, 1), with a local maxi-
mum at x = 0 and a local minimum at x = 1 (see Figure 3(a)).

Proof. By Lemma 5.1, either there exists an x0 ∈ (0, 1) such that P ′(x0) = 0, there
exist x0, x

′
0 ∈ (0, 1) such that P ′(x0) = P ′(x′0) = 0, or P ′ has no zeros in (0, 1). In

the latter case P is monotonic, so let us suppose that P ′ has one or two zeros in
(0, 1). From Lemma 5.2 there are eight cases to consider, initially supposing that
all the zeros of r are transverse:

1. r has one zero in (0, 1) and r(0) = 0, r(1) 6= 0,
2. r has one zero in (0, 1) and r(0) 6= 0, r(1) = 0,
3. r has one zero in (0, 1) and r(0) 6= 0, r(1) 6= 0,
4. r has one zero in (0, 1) and r(0) = 0, r(1) = 0,
5. r has two zeros in (0, 1) and r(0) 6= 0, r(1) = 0,
6. r has two zeros in (0, 1) and r(0) = 0, r(1) 6= 0,
7. r has two zeros in (0, 1) and r(0) 6= 0, r(1) 6= 0 or
8. r has three zeros in (0, 1).
In cases (1-4) the mean-value theorem ensures that P ′ cannot have a zero in

(0, 1) and P is therefore monotonic on (0, 1). In cases (5-7), using the arguments
from Proposition 4.2 and Proposition 4.3, it follows that if P is not monotone then
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16 I. Gudelj and others

Figure 3. A possible non-monotonic shape of solutions of (3.1) when (a) f is sigmoidal
(convex–concave) and (b) f is sigmoidal (concave–convex). In both (a) and (b), r is shown
in left-hand figure (the thick black line denotes zero) and the corresponding solution in
the right-hand figure.

P(x)r(x)

x

x2x1 x3

x
0

0

P(x)r(x)

x

x2x1 x3

x
0

0

(a) (b)

P either has a unique global minimum and two local maxima at x = 0 and x = 1
or has a unique global maximum and two local minima at x = 0 and x = 1.

In case (8) it is possible for P ′ not to have a zero in (0, 1) and P is therefore
monotone. However, if P ′ has one zero then it must have another one. Since f
is sigmoidal convex–concave, r is sigmoidal concave–convex and therefore has sign
pattern −+−+ on [0, 1] as shown in Figure 3(a) (see left-hand diagram). Therefore
there are x1, x2 and x3 such that 0 < x1 < x2 < x3 < 1 and r(x) > 0 on (x1, x2) and
r(x) < 0 on (x2, x3), while r(x1) = r(x2) = r(x3) = 0. Suppose that the two zeros
of P ′ in (0, 1) are x0 and x′0. The mean value theorem ensures that x0 ∈ (x1, x2)
and x′0 ∈ (x2, x3). Since sgn(P ′′(x)) = sgn(r(x)), x = x0 is a local minimum and
x = x′0 is a local maximum. The boundary conditions ensure that x = 0 is a local
maximum and x = 1 is a local minimum, as described in case (iv) in the statement
of the theorem.

If r has a non-transverse zero of multiplicity three then this situation is analo-
gous to case (3) above. The case whereby r has one transverse and one double zero
is inadmissible as then P would have two consecutive non-degenerate local minima.
This covers all possible non-transverse cases by Lemma 5.2.

Proposition 5.4. If (F1) and (F2) hold with Θ = 2 and f is sigmoidal concave-
convex, then any solution of (3.1) is either

(i) monotonic,

(ii) has a unique global minimum and two local maxima at x = 0 and x = 1,

(iii) has a unique global maximum and two local minima at x = 0 and x = 1 or

(iv) has one local maximum and one local minimum in (0, 1), with a local minimum
at x = 0 and a local maximum at x = 1 (see Figure 3(b)).

Proof. The proof is entirely analogous to Proposition 5.3.

From the preceding sequence of results the following can be deduced directly.

Proposition 5.5. If (F1) and (F2) hold then the solution P of (3.1) can only have
two local maxima in (0, 1) if Θ ≥ 3 (see Figure 4).
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Figure 4. A possible non-monotonic shape of solutions of (3.1) when f has a staircase shape,
r is shown in left-hand figure (the thick black line denotes zero) and the corresponding
solution in the right-hand figure.

P(x)r(x)

x
x2x1

x3 x4

x 0

0

6. Concluding Remarks

Remark 1. The asymptotic analysis carried out in §4(a) gives a leading order
approximation to the location of the modal phenotype for smooth, concave trade-
offs, which are also ESSs in this context (for a definition of an ESS see Lawlor and
Maynard-Smith, 1976). We can compare this with the location predicted by Gudelj
et al. (2004) using the adaptive dynamics method and we now give the details of
such a calculation.

Let us assume that f is a concave trade-off, so that from Gudelj et al. (2004),
we know that the adaptive dynamics of (1.1) possesses a single evolutionary stable
strategy (ESS) at some phenotypic location in [0, 1]. Let us consider the case where
i ∈ {1, 2}, so that P1 represents the resident and P2 the mutant pathogen densities.
The resulting four-dimensional system of ODEs has the mutant-free invariant set
M := {(P1, P2,H1,H2) ∈ R4 : P2 = 0}, and when restricted to M this flow has
the globally attractive steady-state e := (P1(x1), 0,H1(x1),H2(x1)), where

H1(x) =
r1

µ + xP1(x)
, H2(x) =

r2

µ + f(x)P1(x)

and P1(x) is given by P in the equation

x
r1

µ + xP
+ f(x)

r2

µ + f(x)P
− γ = 0. (6.1)

Now, the introduction of a mutant corresponds to an examination of the flow
of (1.1) when perturbed away from M. However, M is unstable as an invariant
manifold if e is unstable as an equilibrium, so we consider the right-most eigenvalue
of the linearisation of (1.1) about e. This is the quantity given by F(x1, x2), where

F(x, y) := yH1(x) + f(y)H2(x)− γ;

F is often called the local fitness of the mutant.
From equation (3) of Lawlor and Maynard-Smith (1976), the phenotypic lo-

cation of the ESS occurs where the rate of change of the fitness with respect to
variations in the mutant phenotype is zero, namely at that value x which satisfies

∂F
∂y

(x, x) = 0.
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Figure 5. Solutions of (3.1) for the sigmoidal trade-off f(x) = 1
2
(1− (2x− 1)3). Here

ε = 10−5, r1 = r2 = 4, µ = 1 with γ = 1 (left) and γ = 3 1
2

(right).
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This is the equation
r1

µ + xP
+ f ′(x)

r2

µ + f(x)P
= 0, (6.2)

where P is obtained from (6.1).

In §4(a) the location of the unique modal phenotype was shown to be determined
to leading order by (4.8) and (4.9) when the trade-off is concave, but these equations
are identical to (6.2) and (6.1) respectively. Thus we have deduced that the location
of the ESS obtained in Gudelj et al. which uses the fitness maximisation procedure
of Lawlor and Maynard-Smith (1976), agrees to lowest order with our asymptotic
findings, in the context of concave trade-off functions. Moreover, our classification
also accords with the findings of Gudelj et al. even in the cases where f is not con-
cave, but convex and even sigmoidal, although our results are more general because
Gudelj et al. often rely on specific choices of trade-off function.

Remark 2. Although the classification of phenotypic diversity given in this paper
relies heavily on the second derivative of the trade-off, it only provides an upper
bound on the number of modal phenotypes that exist for a given trade-off. Changes
in other physical parameters could lead to a diminishing of phenotypic diversity.
Consider, for example, Figure 5 (left), where for small γ the pathogen has a bimodal
distribution with a specialist phenotype situated on the left boundary at x = 0.
As γ increases the modal phenotype at this phenotype vanishes and the pathogen
population becomes unimodal (see Figure 5 (right)) and infective to both hosts. In
this case the trade-off is sigmoidal, but the same comment applies to other shapes
too.

Remark 3. It would be a laudable, if intractable, goal to completely describe the set
of modal phenotypes as a function of t for a given initial phenotypic distribution.
To formalise a discussion in this direction, let us denote by σ(t) ⊂ [0, 1] the set of
modal phenotypes at time t, that is

σ(t) = {x ∈ [0, 1] : Px(x, t) = 0 and Pxx(x, t) < 0}.

If there is a T > 0 and a sequence εn ↓ 0 such that #σ(T + εn) > #σ(T − εn)
for all n (where a hash (#) denotes set cardinality) then diversification is said to
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Figure 6. A schematic of possible solutions of Px(x, t) = 0, plotting phenotype (x) against
time (t). Gaussian-like bumps are centred on the curves of maxima (where Pxx(x, t) < 0)
which can be created and destroyed in bifurcations where local maxima and minima of
P (·, t) merge: a pitchfork bifurcation leads to evolutionary branching (left) and hysteresis
leads to an evolutionary leap (right).
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have taken place at t = T . On the other hand, if #σ(T + εn) < #σ(T − εn) then
extinction is said to have occurred.

Now, a function s : [0,∞) → [0, 1] such that s(t) ∈ σ(t) for all t > 0 is called a
selection function. If diversification takes place at t = T and there exists a selection
of σ(·) which is discontinuous, then an evolutionary leap is said to have taken place
at t = T . On the other hand, if every selection function of σ(·) is continuous at
t = T then evolutionary branching is said to have taken place.

Different diversification and extinction events can be characterised according to
bifurcations of the smooth bifurcation problem Px(x, t) = 0, with t playing the role
of parameter. It is clear that both evolutionary branching and leaping events can
occur in smooth solutions of (HP) and are caused by well-known codimension-1
singularities. For instance, evolutionary branching occurs when Px(x, t) = 0 has a
pitchfork bifurcation, whereas an evolutionary leap occurs when the same equation
has a saddle-node bifurcation point (see Figure 6 for pictorial representations of
both cases). From this observation, it is apparent that evolutionary leaping ought
to be the generic diversification mechanism and robust to perturbations in the ini-
tial state of the phenotypic distribution, whereas evolutionary branching should
be a rare, non-generic event. A related discussion can be found in Stewart (2003)
where the author reaches a similar conclusion but starting from different mod-
elling assumptions. We also note that an evolutionary leap has some resonance
with Gould’s concept of punctuated equilibrium.
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