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Abstract. The purpose of this paper is to use mathematical models to investigate the
claim made in the medical literature over a decade ago that the routine rotation of an-
tibiotics in an intensive care unit (ICU) will select against the evolution and spread
of antibiotic-resistant pathogens. In contrast, previous theoretical studies addressing
this question have demonstrated that routinely changing the drug of choice for a given
pathogenic infection may in fact lead to a greater incidence of drug resistance in compar-
ison to the random deployment of different drugs.

Using mathematical models that do not explicitly incorporate the spatial dynamics
of pathogen transmission within the ICU or hospital and assuming the antibiotics are
from distinct functional groups, we use a control theoretic-approach to prove that one
can relax the medical notion of what constitutes an antibiotic rotation and so obtain
protocols that are arbitrarily close to the optimum. Finally, we show that theoretical
feedback control measures that rotate between different antibiotics motivated directly by
the outcome of clinical studies can be deployed to good effect to reduce the prevalence of
antibiotic resistance below what can be achieved with random antibiotic use.

1. Introduction

Antibiotic rotation was been proposed over a decade ago as a way of reducing the inci-
dence of antibiotic-resistant infections. This view, articulated by Niederman in the editorial
Is Crop Rotation of Antibiotics the Solution to a Resistant Problem in the ICU? (see [9])
states

“The ‘crop rotation’ theory of antibiotic use has suggested that if we rou-
tinely vary our ‘go to’ antibiotic in the ICU (intensive care unit), we can
minimize the emergence of resistance...”

In the intervening decade, a number of theoretical studies have espoused a different view-
point in proposing that the heterogenous, random deployment of antibiotics in an ICU unit
or hospital can slow the evolution and spread of drug-resistant pathogens [7, 2, 3]. The
purpose of this paper is to interpret the antibiotic deployment problem in the framework
of optimal control theory using mathematical models of antibiotic use already developed
in [2, 3] and our main finding can be summarised thus: for such mathematical models, the
optimal antibiotic usage protocols do indeed rotate between their ‘go-to’ antibiotics, just
not routinely.

There is no discrepancy between the findings of [2, 3] and this paper; the apparent
difference between the two sets of results rests in the interpretation of what antibiotic
rotation means. The citation of Niederman hints at a scheduled and cyclical rotation that
exchanges one drug for another periodically, where that period is fixed at the start of a
clinical trial, say, just as a crop rotation might only change the crop with each new season.
The work in [2, 3] shows that this idea need not work for antibiotics. Indeed we believe
that there is no theoretical basis to support the optimality of scheduled antibiotic rotation.
However, as we show below, it is equally true that the random allocation of drugs to each
patient is not optimal in the models of [2, 3].
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In general, the optimal protocol will exchange one antibiotic for another across the the-
oretical ICU unit or hospital, not routinely or randomly, but in a manner commensurate
with the epidemiological and evolutionary dynamics observed in each context. It is the
resultant adaptive rotation of antibiotics based on the observation, or even partial obser-
vation, of those dynamics that may lead to the optimal protocol and minimise selection
for drug-resistant pathogens. We arrive at this theoretical result by first noticing that ro-
tational protocols as they are modelled in [2, 3] switch between the prioritisation of two
drugs in such a way that one of them is designated the ‘go-to’ drug at every moment in
time. As we explain later, this form of antibiotic protocol can be written as a bang-bang
function which allows us to apply standard control-theoretic results (see [15], for example)
and deduce the theoretical optimality, or at least near-optimality, of rotational protocols.

In terms of empirical evidence for and against the cycling of antibiotics, some studies
support rotation [11, 8] but others either advocate against it or at least indicate indifference
[13, 14, 10]. The authors of [6] goes as far as making the claim that antibiotic rotation may
be implicated in the cause of an outbreak of resistant Pseudomonas aeruginosa. Empirical
studies evaluating the efficacy of antibiotic rotation prior to 2005 have also been criticised
for ‘multiple methodological flaws and a lack of standardization’, a particular criticism
being the lack of repetition of cycles within rotational protocols [4].

In order to place our analysis into an empirical context we end the paper by taking the
idea that ‘...prescription patterns balancing the use of different antimicrobials should be
promoted to reduce selection pressure’ from [12] to create a feedback control strategy that
balances the use of different antibiotics. To design the rules for this controller we distill
the following observation taken from [1] into a mathematical form:

“A non-premeditated change of antibiotics in empirical therapy, on the basis
of detected resistance patterns, provided promising results in reducing some
antimicrobial resistance rates.”

We interpret this quotation as a maxim that can be employed to control the spread of
resistance in theoretical models of antibiotic use, this maxim states: if the observed level
of resistance to an antibiotic is too high, exchange it for a different antibiotic. Later, we
show by example that the implementation of this simple rule in pre-existing mathematical
models of antibiotic use can outperform the random allocation of drugs.

We end this section with a remark. A crucial biological assumption is used in [2, 3]
to simplify the modelling problem, namely antibiotic symmetry. This assumption is not
benign. It is a mathematical degeneracy and we prove that antibiotic rotation, in the
weaker sense defined in this paper, is optimal whenever such a symmetry property is not
present in a mathematical, epidemiological model of antibiotic use.

1.1. Notation. The 1-norm of a vector s = (s1, ..., sk) is given by ‖s‖1 =
∑k

i=1 |si|. L(Rk)
denotes the space of linear maps on Rk, ‖s‖2 denotes the 2-norm of s: if s = (s1, ..., sk)
then

‖s‖2 =

(
k∑
i=1

s2i

)1/2

and ‖s‖∞ = max
1≤i≤k

|si|.

For each linear mapping A ∈ L(Rk) we define the operator 2-norm ‖A‖2 = sup‖s‖2=1 ‖As‖2.
A function or vector that is zero everywhere will be denoted, on occasion, by 0, so that
f = 0 means that f(t) = 0 or f(t) = (0, 0, ..., 0) for all t.

We shall use a barcode graphic to denote the deployment of two different antibiotics as
part of a rotational protocol, as illustrated in Figure 1. This graphic shows that all patients
are treated initially with drug A, before a switch is invoked at time T1 to drug B.
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Figure 1. Barcodes are used to represent the timing of switches between
antibiotics A and B: in a rotational protocol each antibiotic is either deployed
at its maximum rate, or is not deployed at all.
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Table 1. The parameters we use to simulate (1).

parameter meaning
fa, fb the fraction of patients treated with antibiotic A and B

rw, ra, rb recovery rates of wild-type, A-res and B-res infected hosts
b transmission rate of infection
h maximum rate at which patients are treated
s fraction of patients that acquire resistance when treated
d per capita death rate of uninfected hosts
λ arrival rate of uninfected hosts
c infected hosts’ death rate

2. Two Mathematical Models of Antibiotic Use

Throughout the paper shall use boldscript s to denote the state variable of a mathemat-
ical model, p will denote a vector of fixed parameters used to define the model and t will
denote time. The following mathematical model is investigated in [3, Case III]:

ẋ = λ− dx− b(yw + ya + yb)x+ rwyw + raya + rbyb + ...(1a)
...+ h(1− s)((fa + fb)yw + fayb + fbya),

ẏw = (bx− c− rw − h(fa + fb))yw,(1b)
ẏa = (bx− c− ra − hfb)ya + hsfayw,(1c)
ẏb = (bx− c− rb − hfa)yb + hsfbyw,(1d)

where the state variable is given by s := (x, yw, ya, yb) and the set of fixed, epidemiological
parameters in this model is given by

p := {λ, d, c, h, rw, s, ra, rb, b} .
whose interpretation is contained in Table 1. Here, x denotes the density of uninfected hosts
in a hospital or intensive care unit, say, yw is the density of hosts infected by wild-type
bacterial strain, ya are hosts infected with A-resistant bacteria and yb are hosts infected
with B-resistant strains. There are no multidrug-resistant bacterial strains in this model,
although that case is also considered in a different model in [3].

In (1), fa is a variable that may depend on time and denotes the proportion of infected
hosts treated with antibiotic A, fb is the proportion of hosts treated with a second antibiotic
B, moreover we shall invoke a must-treat everyone constraint that

fa(t) + fb(t) = 1

for all times t ≥ 0. The optimal control problem for (1) is to determine the protocol fa(t)
that minimises the observed prevalence of resistance over a given time period of length T :
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Problem 1

{
min

∫ T
0 yw(t) + ya(t) + yb(t)dt subject to constraints

0 ≤ fa(t) ≤ 1, fb(t) = 1− fa(t) and equation (1).

Definition 1. The 50-50 mixing protocol for Problem 1 is defined by taking a constant
value for the treatment protocol fa, namely

fa(t) = 1/2

for all t ≥ 0. The interpretation of this condition is that exactly half of all infected hosts
are treated with drug A, half with drug B so that fb(t) = 1/2 too. As the mode in Problem 1
does not track individual treatments, this corresponds to the random allocation of the two
drugs per infected patient.

Other mathematical models of drug use are given in the literature such as the following
developed in [2]. Let S be the fraction of patients in a hospital colonised by antibiotic
susceptible bacteria, let R1 be the fraction of patients colonised by bacteria susceptible to
antibiotic 1, let R2 be the fraction colonised by bacteria susceptible to antibiotic 2 and then
X denotes the fraction of uncolonised patients. If we use these variables to create a state
vector s = (S,R1, R2, X), the following epidemiological dynamics describing the antibiotic
treatment of a patient population in a hospital are given in [2]:

Ṡ = µ(m− S)− (τ1 + τ2 + γ)S + βSX + σβ(c1R1 + c2R2)S(2a)

Ṙ1 = µ(m1 −R1)− (τ2 + γ)R1 + β(1− c1)R1X − σβ(c1S + (c1 − c2)R2)R1(2b)

Ṙ2 = µ(m2 −R2)− (τ1 + γ)R2 + β(1− c2)R2X − σβ(c2S + (c2 − c1)R1)R2(2c)

Ẋ = µ(1−m−m1 −m2 −X) + (τ1 + τ2 + γ)S + (τ2 + γ)R1 + ...(2d)
...+ (τ1 + γ)R2 − βX(S + (1− c1)R1 + (1− c2)R2).

The interpretation of the parameter set used in this model

p = {µ, σ, m, m1, m2, γ, β, α, τmax, c1, c2}
is given in Table 2.

As done in [2] and in Problem 1 above, we simplify the optimisation problem associated
with (2) by imposing the must-treat constraint that

τ1(t) + τ2(t) = τmax

for all 0 ≤ t ≤ T , where τmax is a fixed parameter that determines the maximum rate of
drug use. The optimal treatment problem for (2) is to minimise the observed prevalence of
antibiotic-resistant infections subject to treating at the maximum rate possible. We state
this mathematically as follows:

Problem 2

{
min

∫ T
0 R1(t) +R2(t)dt subject to constraints

0 ≤ τ1(t) ≤ τmax, τ2(t) = τmax − τ1(t) and equation (2).

Problem 2 also has a 50-50 mixing protocol that is defined by taking a constant value for
the treatments: τ1(t) = τmax/2 for all t.

Remark 1. In Problem 1 the units of the treatment payoff functional∫ T

0
yw(t) + ya(t) + yb(t)dt

is the total number of patients infected over the period observed. In Problem 2 the treatment
payoff ∫ T

0
R1(t) +R2(t)dt
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Table 2. The parameters we use to simulate (2).

parameter meaning
τ1, τ2 rate of use of drugs 1 and 2 per unit time (days)

m,m1,m2 patients enter hospital in states S,R1 and R2 at rates µm, µm1 and µm2 resp.
c1, c2 fitness cost of resistance to bacteria
σ relative rate of secondary colonization to primary colonization
β rate constant for colonization of uncolonized individuals
γ untreated patients colonized by susceptible bacteria remain

colonized 1/γ days on average
µ rate of patient turnover in the hospital
α represents physician compliance with cycling program

must be multiplied by the total population size in the hospital (some fixed and unknown
constant) in order to represent the total number of patients infected with antibiotic-resistant
pathogens over the period observed. So,

∫ T
0 R1(t) + R2(t)dt/T is the per unit time, mean

fraction of patients infected with drug-resistant pathogens; it is unimportant whether or not
we divide by T when minimising the treatment payoff as T is a fixed parameter.

2.1. Parameter Values for Simulations: the importance of asymmetry. Through-
out the remainder of the paper we shall use the parameter set for Problem 1 defined by

p(1) :=
{
λ = 100, d = 1, c =

3
2
, h = 1, rw = 0, s =

1
10
, ra =

9
10
, rb =

1
10
, b =

4
100

}
with the following initial conditions

s
(1)
0 :=

{
x(0) = (c+ rw)/b, yw(0) =

λ

c
− d

b
− drw

bc
, ya(0) = 0, yb(0) = 0

}
.

This set differs from the parameters given in [3] where s = 1/1000 and ra = 1/10; the
parameter b does not appear to have a defined numerical value in [3].

When working with Problem 2 we shall use the numerical parameter set

p(2) :=
{
µ =

1
10
, σ =

1
4
,m =

7
10
,m1 =

1
20
,m2 =

1
20
, γ =

3
100

, β = 1, ...

..., α =
4
5
, τmax =

1
2
, c1 =

35
100

, c2 =
1
20

}
with initial conditions

s
(2)
0 :=

{
S(0) =

1
5
, R1(0) =

3
10
, R2(0) =

1
10
, X(0) =

2
5

}
.

Throughout the paper the term parameter-initial condition set (PICS) will be used for
the set of epidemiological parameters and initial conditions defined within Problems 1 and
2, note that each element of a PICS forms a pair that we shall write throughout as (p, s0).
The following important definition makes explicit the term symmetric as it is used in [2].

Definition 2. If (p, s0) denotes a PICS for Problem 1, we say it is symmetric if

ra = rb and ya(0) = yb(0).
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If (p, s0) denote a PICS for Problem 2, we say it is symmetric if

c1 = c2,m1 = m2 and R1(0) = R2(0).

The two PICSs (p(1), s
(1)
0 ) and (p(2), s

(2)
0 ) so-defined are asymmetric in the sense of Def-

inition 2, contrasting with the values chosen for numerical simulations in [3, 2] where
symmetric values are used.

Mathematical models that have symmetric parameter values and initial conditions can
be thought of as descriptions of antibiotic deployment problems in which the fundamental
epidemiological properties of the drugs are identical. This may means that there are equal
fitness costs of antibiotic resistance to the pathogenic bacteria, equal transmission rates
of those pathogens or the equal prevalence of resistant phenotypes at the beginning of
an observation period. However, while it is natural to support antibiotic symmetry on
the grounds of numerical parsimony, we claim it is unlikely that two antibiotics will exert
precisely the same selection pressures on bacterial pathogens. As a result we have chosen
to use slightly different parameter sets for our illustrative simulations given later in the
paper from those found in [3, 2] in order to mimic the deployment of two antibiotics from
distinct functional groups as defined, for example, in the sense of [17].

We make the claim that both Problem 1 and Problem 2 must reflect this fundamental
property on biological grounds too. Consider two antibiotics, rifampin (rif) and sorangicin
A (sor), that have the same mode of action and bind to the same residue on their common
target protein, inhibiting the synthesis of mRNA by binding to the β subunit of RNA
polymerase. Rif causes the bacterial cell to abort transcription at the elongation phase,
as does sor, albeit with slightly different abortive transcripts and the gene rpoB controls
resistance mutations to both antibiotics. However, it is known [5] that mutations in rpoB
conferring resistance to rif need not confer resistance to sol because of the greater flexibility
of the sorangicin A molecule (also see [16]); thus functionally identical antibiotics may be
different from an evolutionary perspective. As a result we argue that we should seek to
understand the structure of solutions to Problems 1 and 2 for all parameter sets, whether
symmetric or asymmetric, but we now explain why the mathematical reasons why the
symmetric case is so special.

First, note that the differential equations in Problems 1 and 2 can both be written in the
abstract form

(3) ṡ = f(s, p) +A(t) g(p) · s+B(t) G(p) · s, s(0) = s0 ∈ Rk.

Equation (1) can be written in the form (3) as follows: first set s = (x, yw, ya, yb) and then

f(s, p) = (λ− dx− b(yw + ya + yb)x+ rwyw + raya + rbyb, ...

(bx− c− rw)yw, (bx− c− ra)ya, (bx− c− rb)yb)

so that

g(p) =


0 h(1− s) 0 h(1− s)
0 −h 0 0
0 hs 0 0
0 0 0 −h

 and G(p) =


0 h(1− s) h(1− s) 0
0 −h 0 0
0 0 −h 0
0 hs 0 0

 .
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For equation (2) we have s = (S,R1, R2, X) and

f(s, p) = (µ(m− S)− γS + βSX + σβ(c1R1 + c2R2)S,
µ(m1 −R1)− γR1 + β(1− c1)R1X − σβ(c1S + (c1 − c2)R2)R1,

µ(m2 −R2)− γR2 + β(1− c2)R2X − σβ(c2S + (c2 − c1)R1)R2,

µ(1−m−m1 −m2 −X) + γS + γR1 + ...

...+ γR2 − βX(S + (1− c1)R1 + (1− c2)R2)

with

g(p) =


−1 0 0 0

0 0 0 0
0 0 −1 0
1 0 1 0

 and G(p) =


−1 0 0 0

0 −1 0 0
0 0 0 0
1 1 0 0

 .
The fact that (1) and (2) can both be written in the form of (3) allows us to deduce
properties of these two specific models by deducing properties from the more general and
structural form of (3).

Now, equation (3) is a differential equation on a four-dimensional state-space Σ of non-
negative vectors, so s(t) ∈ Σ for all t, where the parameter vector p lies in a space P of
positive parameter values and so a PICS, (p, s0) say, is an element of P × Σ. In Problem
1 we have s = (x, yw, ya, yb) whereas in Problem 2 we write s = (S,R1, R2, X). The
parameter-dependent linear maps g(p) and G(p) describe how the different rates of input
of each antibiotic into the system drive the epidemiological dynamics of that system.

The optimality criteria in Problems 1 and 2 can now be written in an abstract form by
defining a weight vector, call it w, setting A(t) +B(t) ≡ C, the latter a fixed constant, and
then seeking a protocol A(t) ∈ L∞(0, T ) that achieves

Problem A

{
min

∫ T
0 (w, s(t))dt subject to constraints

0 ≤ A(t) ≤ C, A(t) +B(t) ≡ C and equation (3);

the optimal protocol that solves Problem A will be denoted throughout by A∗(t). Note that
both Problems 1 and 2 have the same form as Problem A and so any statement made of
Problem A regarding the structure of A∗(t) has immediate consequences for both Problem
1 and Problem 2.

For each measurable control or deployment function A satisfying 0 ≤ A(t) ≤ C, the
corresponding solution sA obtained by solving the differential equation (4) yields a value
of the functional

R(A) :=
∫ T

0
(w, sA(t))dt

that will be denotedR(A) throughout the remainder and called the treatment objective. The
function of t, (w, sA(t)), will be called the running objective associated with A. Moreover,
for Problems 1 and 2 the weight vectors are

w = (0, 1, 1, 1) and w = (0, 1, 1, 0),

respectively.
Let us now be precise about the differences between antibiotic cycling, antibiotic rotation

and antibiotic mixing protocols and note that the terms alternating protocol and sequential
protocol are used synonymously for the term antibiotic rotation in the remainder of the
paper.

Definition 3. Any measurable, almost-everywhere (a.e.) periodic function A(t) defines an
antibiotic cycling protocol for Problem A if 0 ≤ A(t) ≤ C a.e., whereas if A(t) is constant
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(a.e.) it defines a mixing protocol. If two functions A(t) and B(t) satisfy

A(t)B(t) = 0

for almost all t, we say that the antibiotics A and B are deployed in rotation in Problem A.

Any protocol whereby ∫ T

0
A(t)dt =

∫ T

0
B(t)dt

will be described using the prefix ‘50-50’.

The subsetM⊂ P×Σ for which a solution A(t) of Problem A is a mixing protocol is called
the mixing PICS; note that M may be empty.

Implementing the must-treat constraint A(t) +B(t) = C in equation (3) yields

ṡ = f(s, p) +A(t) g(p) · s+ (C−A(t)) G(p) · s,
= f(s, p) + C ·G(p) · s+A(t)(g(p)−G(p)) · s,(4)

and so we define, here and throughout,

G(p) := g(p)−G(p) and F(s, p) := f(s, p) + C ·G(p) · s.

Thus, if there is any parameter value p′ for which g(p′) = G(p′) then the set{
(p′, s0) : s0 ∈ Σ

}
must lie in the mixing PICS because the independence of equation (4) of A in this case
renders the treatment objective identical for all deployment protocols. This is a trivial
form of degeneracy that causes the mixing PICS M to be non-empty; we discuss less
trivial examples below.

The Lagrangian of Problem A is

L(s,µ, A) =
∫ T

0
(w, s) + (µ,−ṡ+ F(s, p) +A · G(p)s) dt,

and the Hamiltonian H is

H(s,µ, A) = (w, s) + (µ,F(s, p)) + (µ,G(p)s) ·A,

finally, the adjoint variable µ satisfies the final-value problem

(5) −µ̇ = w + (Fs(s, p)T +A · G(p)T )µ, µ(T ) = 0.

As is well-known, the Hamiltonian associated with (4-5) is maximised at all times along an
optimal solution (s∗,µ∗, A∗) of Problem A with respect to the control variable A:

H(s∗(t),µ∗(t), A∗(t)) = max
0≤a≤C

H(s(t),µ(t), a).

Now max{H(s∗(t),µ∗(t), a)|0 ≤ a ≤ C} occurs when a = C if (µ∗(t),G(p)s∗(t)) > 0
and when a = 0 if (µ∗(t),G(p)s∗(t)) < 0, if (µ∗(t),G(p)s(t)) = 0 then A(t) is said to be
singular. The solution of the optimal control problem Problem A is therefore a bang-bang
function A∗(t) taking only the values 0 and C unless t takes values in an interval where the
switching function (µ∗(t),G(p)s∗(t)) is zero:

(6) A∗(t) =

 C if (µ∗(t),G(p)s∗(t)) > 0
0 if (µ∗(t),G(p)s∗(t)) < 0

something else if (µ∗(t),G(p)s∗(t)) = 0.
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Bang-bang controls correspond precisely to the antibiotic rotational protocols of Problem
A and from the form of the optimal control A∗ given in (6) we deduce that Problem A may
only have a solution that is a mixing protocol when

(7) σ(t) := (µ∗(t),G(p)s∗(t)) = 0

for almost all t between 0 and T .
Based on this observation, and one that is quite standard within the theory of optimal

control, condition (7) will be used below to rule out mathematical models within Problem
A for which mixing outperforms antibiotic rotation. Moreover, switching functions such as
σ(t) in (7), so-named because it tells us when an exchange of antibiotics should be invoked,
will be denoted using the Greek letter σ throughout the paper.

Using condition (7) as the starting point, we deduce the following theorem that provides
technical conditions on F and G under which there can be no solution of Problem A that
represents an antibiotic mixing protocol.

Theorem 1. Suppose that ω∗ ∈ (0,C) is a fixed constant and that

(8) (w,G(p)s0) 6= 0,

then there is a T > 0 such that for no T ∈ (0, T ) is A∗(t) ≡ ω∗ a mixing solution of Problem
A. However, if (w,G(p)s0) = 0 and either

(w,G(p)(F(s0, p) + ω∗G(p)s0)) 6= 0, or(9a)
(w, (Fs(s0, p) + ω∗G(p))G(p)s0) 6= 0,(9b)

then there is a T > 0 such that for no T ∈ (0, T ) is the constant function A∗(t) ≡ ω∗ a
solution of Problem A.

Proof. Begin by defining a new time-scale τ := t/T and re-writing the Euler-Lagrange
equations of Problem A, namely (4-5), in the form

ṡ = T (F(s, p) +A(t)(g(p)−G(p))), s(0) = s0,(10)

−µ̇ = T (w + (Fs(s, p)T +A · G(p)T )µ), µ(1) = 0.(11)

Now set m := µ/T so that

(12) −ṁ = w + T (Fs(s, p)T +A · G(p)T )m), m(1) = 0.

To complete the proof we shall need the following auxiliary lemma that is required nowhere
else in the paper.

Lemma 1. Suppose that s(t) = (s1(t), ..., sk(t)) is any continuous function defined on
[0, 1] such that s(0) = s0,m ≤ si(t) ≤ M for all 1 ≤ i ≤ k and that A : Rk → L(Rk) is a
continuous map. If w ∈ Rk is any vector then the solution µ ∈ C1([0, 1],Rk) of

µ̇(t) = T (A(s(t))µ+w)

with µ(1) = 0 satisfies
‖µ(t)‖∞ ≤ ‖w‖2(eTρ − 1)ρ−1,

where ρ = max{‖A(s)‖2 : m ≤ s ≤ M}. Hence m(t) := µ(t)/T satisfies ‖m(t)‖∞ ≤
‖w‖2(eTρ − 1)/(Tρ).

Proof. Let Φ(t) be the smooth, one-parameter family of matrices that satisfies

Φ̇(t) = T ·A(s(t))Φ(t), Φ(0) = I.
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If u ∈ Rn is any vector then |(A(s)u,u)| ≤ ‖A(s)‖2‖u‖22 and so
d

dt
‖Φ(t)u‖22 = 2T (A(s(t))Φ(t)u,Φ(t)u) ≤ ‖A(s(t))‖2 · 2T‖Φ(t)u‖22

≤ max
m≤s≤M

‖A(s)‖2 · 2T‖Φ(t)u‖22

and so ‖Φ(t)u‖2 ≤ eρT t‖Φ(0)u‖2 = eρT t‖u‖2 from where ‖Φ(t)‖2 ≤ eρT t. Now µ(t) =
T
∫ t
1 Φ(t− t′)wdt′ and so

‖µ(t)‖∞ ≤ ‖µ(t)‖2 ≤ T
∫ 1

0
‖Φ(t− t′)‖2‖w‖2dt′ ≤ T‖w‖2

∫ 1

0
eTρ(t−t

′)dt′

and the result follows. �

The proof of Theorem 1 follows immediately below and to reduce notational clutter we
assume without loss of generality that the constant C defined in Problem A equals one.

Suppose that a parameter value T , that we label T ∗, exists for which Problem A has
optimal control A∗ ≡ ω∗ ∈ (0, 1) with treatment objective R(ω∗) and so we may suppose
(s∗,m∗) is a solution of the re-scaled Euler-Lagrange equations (10-11). If we now define

S∗(t) := s∗(t)− s0,

we may re-write the Euler-Lagrange equations associated with Problem A as a nonlinear
operator equation that we denote E(S,m, T, ω) = 0, where

E(S,m, T, ω) :=
(
−Ṡ + T (F(s0 + S, p) + ω · G(p)(s0 + S))
ṁ+ T (FTs (s0 + S, p) + ω · G(p)T )m+w

)
.

Hence E(S∗,m∗, T ∗, ω∗) = 0 for (S∗,m∗) ∈ U × V where

U := {S ∈ C1([0, 1],Rk) : S(0) = 0} and V := {m ∈ C1([0, 1],Rk) : m(1) = 0}
are Banach spaces when endowed with standard C1 norms and

E : U × V × R→ C0([0, 1],Rk)× C0([0, 1],Rk)

is an everywhere continuously Fréchet differentiable nonlinear mapping.
Define the following isomorphism of Banach spaces D : U × V → C0([0, 1],Rk) ×

C0([0, 1],Rk) given by the differential operator

D(S,m) =
d

dt
(−S,m).

Being an isomorphism, D is a linear operator of Fredholm index 0 but then

∂S,mE : U × V → C0([0, 1],Rk)× C0([0, 1],Rk)

is also a linear, Fredholm mapping of index-0 because it is a compact perturbation of D.
Thus, ∂S,mE(S∗,m∗, T ∗, ω∗) is an isomorphism if and only if it is injective and so, seeking a
null-space of the linear operator ∂S,mE(S∗,m∗, T ∗, ω∗) we must solve the linear differential
equation

∂S,mE(S∗,m∗, T ∗, ω∗)[X,Y ] = [0,0]
for X and Y . Computing the form of the derivative matrix ∂S,mE(S∗,m∗, T ∗, ω∗)[X,Y ]
gives

∂S,mE(S∗,m∗, T ∗, ω∗)[X,Y ] =
(
−Ẋ + T ∗(Fs + ω∗G)X
Ẏ + T ∗((FTs + ω∗GT )Y + Fss(s0 + S∗)T [m∗, X]

)
,

where the entries in this matrix are evaluated at (S∗,m∗, T ∗, ω∗) and we deduce

−Ẋ + T ∗(Fs + ω∗G)X = 0
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for some function X ∈ U . Standard uniqueness theorems for non-autonomous ordinary
differential equations now yield X(t) ≡ 0 as X(0) = 0, but then Y = 0 immediately follows
and so ∂S,mE(S∗,m∗, T ∗, ω∗), having been shown to be injective, is an isomorphism for all
(S∗,m∗, T ∗, ω∗) ∈ U × V × R2 with E(S∗,m∗, T ∗, ω∗) = 0, ω∗ ∈ [0, 1] and T ∗ > 0.

As a consequence, we can apply the implicit function theorem to solve E(S,m, T, ω) = 0
near to any given solution (S∗,m∗, T ∗, ω∗) to provide a locally unique, two-dimensional
solution surface on which one can write S = S(T, ω) ∈ U,m = m(T, ω) ∈ V such that

E(S(T, ω),m(T, ω), T, ω) ≡ 0,

where S(T ∗, ω∗) = S∗ and m(T ∗, ω∗) = m∗. Denote the common domain of definition of
S(T, ω) and m(T, ω) as provided above by the implicit function theorem by Ω′ and then
define Ω to be Ω′ ∩ (0, T ∗]× (0, 1).

We shall call the two-parameter function (S(T, ω),m(T, ω)) the mixing surface of Prob-
lem A for it contains every possible small-T mixing solution of this optimal control problem.
We can extend the domain of this surface, currently Ω, to the entire rectangular domain
[0, T ∗]× [0, 1] using Lemma 1 and the implicit function theorem, but we shall only sketch
the argument as follows.

First fix ω = ω∗. If

inf{T : (S(T, ω∗),m(T, ω∗), T, ω∗) : (T , T ∗]→ U × V × [0,∞) such that

E(S(T, ω∗),m(T, ω∗), T, ω∗) = 0} > 0

then we can find a sequence (S∗n,m
∗
n, T

∗
n , ω

∗) ∈ U × V × [0, T ∗] to form this infimum. By
Lemma 1 this sequence is C0-bounded, but from the form of E(S∗n,m

∗
n, T

∗
n , ω

∗) = 0 we can
bootstrap to readily obtain C2 bounds on this same sequence and so extract C1-convergent
subsequences that we do not relabel that converge to a solution of E(S,m, T, ω∗) = 0. We
can then apply the implicit function theorem using the fact that ∂S,mE(S,m, T, ω∗) is an
isomorphism at this point to further extend the definition of (S(T ),m(T ), T, ω∗) to a lower
value of T . This is a contradiction which ensures that

inf{T : (S(T, ω∗),m(T, ω∗), T, ω∗) : (T , T ∗]→ U × V × [0,∞) such that

E(S(T, ω∗),m(T, ω∗), T, ω∗) = 0} = 0.

With a further application of the implicit function theorem at each point (T, ω∗) ∈
[0, T ∗]× {ω∗}, we can extend the domain of definition of the mixing surface in an entirely
analogous manner to a rectangular strip [0, T ∗] × (ω∗ − η, ω∗ + η), for some η > 0, that
contains the line [0, T ∗]×{ω∗}. Lemma 1 can then be used to bootstrap and so continuously
extend the domain of definition of the mixing surface to the strip [0, T ∗]× [ω∗ − η, ω∗ + η].
Further applications of this bootstrapping process and the implicit function theorem then
allow one to extend this domain from a thin strip to the entire rectangle [0, T ∗]× [0, 1].

Although the mixing surface is now defined on [0, T ∗]× [0, 1], because mixing solutions
must be totally singular in the construction of the optimal control (6) this surface only
contains mixing solutions of Problem A when the switching function σ defined in (7) equals
zero as a function in C0[0, 1] when evaluated on that surface. In other words,

σ(T, ω)(t) := (G(p)(s0 + S(T, ω)(t)),m(T, ω)(t)) = 0

must be satisfied for all t between 0 and 1 in order for the mixing protocol ω to be a solution
of Problem A.

Our goal now is to use the infinite-dimensional version of Taylor’s theorem to determine
conditions that must be satisfied by F and G under the assumption that mixing is optimal.
From this working assumption, the optimal control of Problem A is A∗(t) ≡ ω∗ identically
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in t which is a constant and so smooth function. Accordingly we can apply the infinite-
dimensional version of Taylor’s theorem and write, for 0 ≤ t ≤ 1 and fixed ω > 0,

σ(T, ω)(t) = σ(0, ω)(t) + T∂Tσ(0, ω)(t) +O(T 2),

where the O(T 2) term here is measured in the C0-norm. Solving E(S,m, T, ω) = (0, 0)
when T = 0 and ω is arbitrary yields the unique solution

S(t) = 0, m(t) = (1− t)w.

Continuing with the application of the Taylor’s theorem and expanding the solution locus
of E(S,m, T, ω) = (0, 0) locally as a Taylor series, we therefore obtain

S(T, ω)(t) = 0 + T∂TS(0, ω)(t) +O(T 2), m(t) = (1− t)w + T∂Tm(0, ω)(t) +O(T 2).

Let us now compute the T -derivative ∂TS(T, ω)(t) that we denote by ST ∈ U , for
the derivative ∂Tm(T, ω)(t) we shall write mT ∈ V . On differentiating the equation
E(S,m, T, ω) = 0 with respect to T we find

d

dt
ST = F(s0, p) + ω · G(p)s0(13a)

− d

dt
mT = (Fs(s0, p)T + ω · G(p)T )m(13b)

where m(t) = (1− t)w. Solving (13a-b) and incorporating boundary conditions we obtain,
for 0 ≤ t ≤ 1 and at T = 0,

ST (t) = t(F(s0, p) + ω · G(p)s0), mT (t) =
1
2

(1− t)2(Fs(s0, p)T + ω · G(p)T )w.

But the following expression for the switching function σ is identically zero in ω, T and t:

0 = σ(T, ω)(t) = (G(p)(S(T, ω)(t) + s0),m(T, ω)(t))

= (G(p)s0 + G(p)S(T, ω)(t), (1− t)w + TmT (0, ω)(t) +O(T 2))

= (G(p)s0 + G(p)(S(0, ω)(t) + TST (0, ω)(t) +O(T 2)),

(1− t)w + TmT (0, ω)(t) +O(T 2))

= (G(p)s0 + TG(p)(ST (0, ω)(t) +O(T )),

(1− t)w + TmT (0, ω)(t) +O(T 2))

= (1− t)

compare with (8)︷ ︸︸ ︷
(G(p)s0,w) +T (1− t)(G(p)ST (0, ω)(t),w) + ...

...+ T (G(p)s0,mT (0, ω)(t)) +O(T 2)(14)

In order for the mixing constant ω∗ to be the optimal solution of Problem A from the O(1)
terms in (14) we require (G(p)s0,w) = 0, but the O(T ) terms must also be identically zero
in t. Hence, the quadratic expression in t

t(1− t)(G(p)[(F(s0, p) + ω · G(p)s0)],w) +
1
2

(1− t)2(G(p)s0, (Fs(s0, p)T + ω · G(p)T )w)

must be zero for all t ∈ [0, 1] and all (T, ω) in the domain of σ, concluding the proof. �

Theorem 1 is a negative result in the sense that it does not help us find solutions of
Problem A, but it can be used to tell us when antibiotic mixing is not a solution of Problem
1 and Problem 2 in concrete cases. In particular, we have the following two corollaries
which state that Problem 1 and Problem 2 have optimal controls that are mixing protocols
only when their respective sets of parameters and initial conditions (PICSs) are symmetric.
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Corollary 1. Suppose that system parameters (given by the vector p) and initial conditions
(given by the vector s0 = (x(0), yw(0), ya(0), yb(0))) are non-negative in (1) with h > 0 and
suppose also that Problem 1 has an optimal mixing treatment f∗a (t) that we denote by the
constant ω∗ ∈ (0, 1). If yw(0) > 0 and h > 0, then the PICS (p, s0) is necessarily symmetric:

(15) ω∗ =
1
2
, ra = rb and ya(0) = yb(0),

and so ya(t) = yb(t) for all t ≥ 0.

Proof. On setting w = (0, 1, 1, 1), s0 = (x(0), yw(0), ya(0), yb(0)) and using the functions F
and G to represent the system (1), we find

G(p) =


0 0 −h(1− s) h(1− s)
0 0 0 0
0 hs h 0
0 −hs 0 −h

 .
Applying condition (8) and using

G(p)s0 = ((ya(0)− yb(0))h(1− s), 0, hsyw(0) + hya(0),−hsyw(0)− hyb(0))

we obtain

(w,G(p)s0) = (0, 1, 1, 1) · ((ya(0)− yb(0))h(1− s), 0, hsyw(0) + hya(0),−hsyw(0)− hyb(0))

= h(ya(0)− yb(0)) = 0(16)

But then

(17) h(ya(0) + hsyw(0))(rb − ra + h(2α− 1)) = 0

and

(18) h(ya(0)(rb − ra) + h(2α− 1)(ya(0) + hsyw(0))) = 0

follow from conditions (9a-b) of Theorem 1. Assuming h > 0 and yw(0) > 0, the first part
of the corollary (15) follows on solving the three algebraic relations (16), (17) and (18).

The last part of the statement of this corollary follows by noting that if δ(t) := ya(t)−
yb(t), along solutions of (1) the function δ satisfies δ(0) = 0 and δ̇(t) ≡ 0 if the restriction
(15) is imposed from where we deduce that δ is identically zero as required. �

The following shows that a similar statement can be made for Problem 2.

Corollary 2. Suppose that system parameters (given by the vector p) and all initial con-
ditions (given by the vector (S(0), R1(0), R2(0), X(0)) are non-negative in (2) and suppose
Problem 2 has a mixing optimal control τ∗1 that we denote by the constant ω∗ ∈ (0, τmax),
then

(19) R1(0) = R2(0), c2 = c1 +
τmax − 2ω∗

β(X(0) + σS(0))
, m1 = m2 +

2(2ω∗ − τmax)σR1(0)2

µ(X(0) + σS(0))
.

As a result, if the 50-50 mixing protocol ω∗ = τmax
2 is optimal then c1 = c2 and m1 = m2,

therefore R1(t) = R2(t) for all t ≥ 0.

Proof. On setting w = (0, 1, 1, 0), s0 = (S(0), R1(0), R2(0), X(0)) and using the functions
F and G to represent the system (2), we find that

G(p) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 −1 1 0

 .
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Using the fact that G(p)s0 = (0, R1(0),−R2(0), R2(0)−R1(0)) we obtain

(20) (G(p)s0,w) = R1(0)−R2(0)

and the first part of (19) follows from condition (8). The remaining two conditions of
Theorem 1, (9a) and (9b), yield the following algebraic relations for elements within the
mixing PICS:

µm1 −R1 τ − β R1Xc1 − σ β Sc1R1 − 2σ β R1
2c1 + 2σ β R1

2c2 + ...(21)
...+ 2αR1 − µm2 + β R1Xc2 + σ β Sc2R1 = 0

and

(22) −R1 τ − β R1Xc1 − σ β Sc1 R1 + 2αR1 + β R1Xc2 + σ β Sc2R1 = 0,

where the initial condition of each variable, S,R1, R2 and X, has been omitted for clarity,
so that S denotes S(0) and similarly for the other variables. On solving the relations (21)
and (22) for (m1, c2) in terms of all the other variables, equation (19) results.

Finally, if ω∗ = τmax
2 is optimal and we define the function δ(t) := R1(t) − R2(t), δ can

be shown to satisfy δ(0) = 0 and δ̇(t) ≡ 0 along solutions of (2) when one imposes the
restriction that c1 = c2 and m1 = m2 from (19). The result now follows. �

Corollaries 1 and 2 represent analogous statements in terms of Problems 1 and 2 that
may be summarised as follows: we do not yet know whether antibiotic mixing protocols
are optimal for Problems 1 and 2, but if mixing is optimal for one of these models at
some parameter value, the parameters and initial conditions within that model must be
symmetric in the sense of Definition 2. These two results form the essence of our argument,
ensuring as they do that many biologically interesting parameter values exist for which
antibiotic mixing is not the optimal protocol. Indeed, these corollaries show that mixing
may only be optimal in mathematically rare cases.

3. Optimal Protocols: Bang-Bang Controls

The results of the previous section are entirely negative and give no clue as to what
the optimal deployment protocols might actually be for a given mathematical model. So,
we now apply standard control-theoretic results to establish the epidemiological result
that alternating protocols are optimal for Problem A, or at least ‘ε-suboptimal’ in a sense
described below.

The set of admissible controls U for Problem A is the set of measurable functions taking
values almost everywhere between 0 and C:

U = {φ ∈ L∞[0, T ] : 0 ≤ φ(t) ≤ C for almost all t ∈ [0, T ]},

we are interested in conditions under which a solution of Problem A exists and lies in U .
The set of bang-bang functions B is contained within U and is defined by

B = {φ ∈ U : ∃ partition 0 = t1 < t2 < ... < tn = T such that φ(t) ∈ {0,C} ∀ t ∈ (tk, tk+1)} .

It is important to note that bang-bang functions B exactly describe the rotational protocols
of equation (4) because the range of a function φ ∈ B can only contain the two values 0
and C. In terms of Problem A, if A(t) = φ(t) and B(t) = C− φ(t) then A and B represent
a rotational protocol that is completely described by φ.

The following basic existence theorem tells us that an optimal control exists for Problem
A provided (4) has a natural control-independent, point-dissipative bound. More impor-
tantly, it shows that the optimal deployment protocol can be approximated arbitrarily
closely in a suitable sense by functions that rotate between the two antibiotics.
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Theorem 2. Suppose that there is a finite constant C depending on C, p, T and s0 such
that for any function A ∈ U , the solution s of (4) with s(0) = s0 satisfies, for any norm
‖ · ‖,

(23) sup
0≤t≤T

‖s(t)‖ ≤ C(C, p, T, s0).

Then Problem A has at least one solution A∗ ∈ U with corresponding state response s∗

which satisfies (4) with A = A∗. For each ε > 0 there is a function Aε ∈ B such that if
sε(t) is obtained by setting A = Aε in (4), then Aε is ε-suboptimal in the sense that∫ T

0
(w, sε(t))dt <

∫ T

0
(w, s∗(t))dt+ ε.

Proof. Suppose that the sequence (sn, An) provides the infimum R∗ := inf {R(A) : A ∈ U},
then we may assume that there is an Ainf ∈ U such that An

∗
⇀ Ainf in L∞(0, T ) as n→∞

because U is compact with respect to the weak∗ topology on L∞. Without the loss of any
generality, let us shift the initial datum to zero in equation (4) by assuming that sn satisfies

ṡn = F(s0 + sn, p) +An · G(p)(s0 + sn), sn(0) = 0,

instead of (4). We obtain the bound
∥∥ d
dtsn

∥∥
∞ ≤ ‖F(s0 + sn)‖∞ + C‖G(p)‖1‖s0 + sn‖∞,

but ‖sn‖ ≤ C(C, p, T, s0) and as all finite-dimensional norms are equivalent it follows that
the sequence (sn) ⊂W 1,∞

0 ((0, T ),Rk) is bounded (the space W 1,∞
0 ((0, T ),Rk) appropriately

incorporates the zero boundary condition at t = 0). As a result (sn) has a weak∗ convergent
subsequence that we do not relabel, converging to sinf ∈W 1,∞

0 ((0, T ),Rk). As the nonlinear
mapping N : W 1,∞

0 (0, T )× L∞(0, T )→ L∞(0, T ) given by

N (s, A) = − d

dt
s+ F(s0 + s, p) +A · G(p)s

is continuous with respect to weak∗ convergence in W 1,∞
0 (0, T )×L∞(0, T ), we see that the

limiting pair (s0 + sinf , Ainf) satisfies (4), that is N (sinf , Ainf) = 0 and the result follows on
setting A∗ = Ainf . �

3.1. The optimal mixing protocol. As pointed out in Appendix B3 of [3], the idea of an
optimal mixing protocol is meaningful in the context of asymmetric antibiotic deployment
problems whereby asymmetric PICS values are used. In such a case, the optimal mixing
protocol has to be adjusted from the 50-50 value of ω = 1/2 to account for their different
evolutionary and epidemiolgical properties.

So, let sω(t) be the solution of the differential equation

ṡ = f(s, p) + C ·G(p)s+ ω(g(p)−G(p)) · s, s(0) = s0

which sees the constant deployment of two antibiotics at some rate ω ∈ [0, C]. The optimal
mixing protocol for equation (4) is found by solving a one-dimensional optimisation problem
which asks for the single value ω between 0 and C, denoted ω∗, for which the treatment
objective

R(ω) :=
∫ T

0
(w, sω(t))dt

is minimal. It is clear that the optimal mixing protocol is suboptimal in the context of (4)
because

(24) R(ω∗) = min
0≤ω≤C

ω constant

R(ω) ≥ min
0≤A(t)≤C

A measurable

R(A) = R(A∗),
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by definition. Note that we have already proven in Corollaries 1 and 2 of the previous section
that equality is possible in (24) for Problem 1 and Problem 2 only when the parameters and
initial conditions used within those problems are symmetric.

Theorem 2 can be applied to Problems 1 and 2 to provide the main mathematical result
of this paper as a corollary.

Corollary 3. Problems 1 and 2 have optimal controls f∗a (t) ∈ L∞(0, T ) and A∗(t) ∈
L∞(0, T ) respectively. If their respective PICSs are asymmetric then there are infinitely
many antibiotic rotation protocols that outperform antibiotic mixing in terms of the perfor-
mance measure R(A).

Proof. From Theorem 2 we only have to establish the existence of a dissipative bound of
the form (23) for equations (1) and (2), the result then follows from the second part of
Theorem 2.

(1) From equation (1) define the strictly positive vector v = (d, c, c + hsfb, c + hsfa)
and vmin = min{v} which is either c or d if hs > 0 and fa + fb = 1. De-
fine the state vector s = (X, yw, ya, yb), the vector of initial conditions s0 =
(X(0), yw(0), ya(0), yb(0)) and the vector 1 = (1, 1, 1, 1). Also define the param-
eter vector p = (λ, d, c, h, rw, s, ra, rb, b) for completeness.

Equation (1) is point dissipative in the sense that if fa ∈ L∞(0, T ) is any mea-
surable function with 0 ≤ fa(t) ≤ 1, fb(t) = 1− fa(t) and hs > 0 then

(1, s(t)) ≤ λ

vmin
+ e−vmint

(
(1, s0)− λ

vmin

)
for all t ≥ 0. To see this define n(t) := (1, s(t))− λ

vmin
, then

d

dt
n = (1, ṡ(t)) = λ− vTs(t) =

(
λ− (v, s(t))

vmin

)
vmin,

but −(v,s(t))
vmin

< −(1, s(t)) and so the following differential inequality results

d

dt
n <

(
λ

vmin
− (1, s(t))

)
vmin = −nvmin.

Integration of the latter inequality when n(0) > 0 implies n(t) < e−vmintn(0), the
result now follows because if n(0) < 0, then n(t) can never be positive and so

(25) sup
0≤t≤T

‖s(t)‖1 ≤
λ

vmin
+ e−vminT

(
(1, s0)− λ

vmin

)
=: C(p, T, s0).

(2) Now consider (2) and define the state vector s = (S,R1, R2, X), the vector of initial
conditions s0 = (S(0), R1(0), R2(0), X(0)), the vector 1 = (1, 1, 1, 1) and the vector
of parameters p = (µ, σ,m,m1,m2, γ, β, α, τmax, c1, c2).

Equation (2) is point dissipative in the sense that if τ1 ∈ L∞(0, T ) is any mea-
surable function with 0 ≤ τ1(t) ≤ τmax, τ2(t) = τmax − τ1(t) then

(1, s(t)) = 1− µe−µt(1, s0),

for all t ≥ 0. To see this define n = (1− (S+R1 +R2 +X))/µ = (1− (s,1))/µ and
a short calculation shows that ṅ = −µn. As a result n(t) = e−µtn(0) and therefore

(1, s(t)) = X(t) +R1(t) +R2(t) + S(t) = 1− µe−µtn(0), t ≥ 0

and so

(26) sup
0≤t≤T

‖s(t)‖1 ≤ 1− e−µT + e−µT (1, s0) =: C(p, T, s0).



ROTATING ANTIBIOTICS IS OPTIMAL 17

The bounds (25) and (26) ensure that Theorem 2 can be applied to Problems 1 and 2 and
the result follows. �

The following theorem illustrates that when condition (8) of Theorem 1 applies, the
optimal antibiotic deployment protocol cannot be antibiotic mixing. Indeed, within the
optimal protocol there is a time interval over which one of the drugs should not be deployed
and the analysis immediately below tells us that this is because condition (8) can be thought
of as telling us when the prevalence of resistance to one of the antibiotics is too high. We
formalise this idea in the following theorem.

Theorem 3. Suppose that there is a finite constant C depending on C, s0, T and p (but
not A) such that for any function A ∈ U , the solution s of (4) with s(0) = s0 satisfies
‖s‖ ≤ C(C, p, T, s0). Also assume that condition (8) holds:

(w,G(p)s0) 6= 0

and write s∗(t) for the solution of (4) corresponding to an optimal control A∗(t) of Problem
A. As a result, to each T we can associate at least one optimal control A∗T by Theorem 2.

Under these restrictions there exists uncountably many T > 0 for which A∗T (·) takes either
the value 0 or C on a non-trivial sub-interval of [0, T ] of the form [0, τ) and so cannot be
a mixing protocol.

Proof. Let (Tn) be any positive sequence of times converging to zero and let A∗Tn
be

an optimal solution of Problem A associated with these times; such a sequence is well-
defined from the conditions of the theorem. Now define the switching function σn(t) :=
(mn(t),G(p)sn(t)) where sn and mn provides a solution of the re-scaled Euler-Lagrange
equations given by the pair (10) and (12) when the function A(t) in those equations is
given by the optimal control A∗Tn

. (The rescaling alluded to changes the time interval of
the problem from [0, T ] to [0, 1] and so this will be assumed in the remainder of the proof.)

As Tn → 0 in the Euler-Lagrange equations (10) and (12), the associated solutions
(sn,mn) with control An := A∗Tn

satisfies

sn → s0 and mn → (1− t)w,

as n → ∞, where the convergence is strong in W 1,∞(0, 1), as can be seen by bootstrap-
ping on the assumption of the existence of the a-priori bound ‖sn‖ ≤ C(p, T, s0). Thus,
the corresponding sequence of switching functions (as given in (7) but now with m(t)/T
replacing µ(t))

σn(t) :=
1
T

(G(p)sn(t),mn(t)) satisfies σn(t)→ (1− t)
T

(w,G(p)s0),

strongly in W 1,∞(0, 1) as n→∞.
However, the affine function of t, (1− t)(w,G(p)s0) defined for 0 ≤ t ≤ 1 is non-zero on

[0, 1) by assumption and has a transverse zero at t = 1. As a result, by the properties of
uniform convergence, there is a sequence τn converging to 1 from below such that for all
large enough n the function σn(t) is non-zero in [0, τn).

Now let A0
n(t) denote any measurable function bounded below by 0 and above by C.

From (6) the optimal control An has the form

An(t) =

 C : σn(t) > 0,
0 : σn(t) < 0,

A0
n(t) : σn(t) = 0,
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for each n, it follows for sufficiently large n that An has the form

An(t) =
{

C : 0 ≤ t ≤ τn,
A0
n(t) : τn < t ≤ 1,

if we assume that (w,G(p)s0) > 0. If, on the other hand (w,G(p)s0) < 0, then

An(t) =
{

0 : 0 ≤ t ≤ τn,
A0
n(t) : τn < t ≤ 1,

completing the proof. �

Applying Theorem 3 to Problems 1 and Problems 2 gives the following natural condition
on the form of the optimal controls. From equation (16) in the case of Problem 1, condition
(8) can be written

h(ya(0)− yb(0)) 6= 0
whereas from equation (20) in the case of Problem 1 this abstract condition becomes

R1(0)−R2(0) 6= 0.

We can see from an epidemiological perspective that the abstract condition (8) has a very
simple and practical interpretation: if resistance to one of the antibiotic is greater than to
the other, do not use that antibiotic.

We now ask what happens when we take the idea hinted at in the previous paragraph
of deploying only one antibiotic when the situation demands, for example use only drug
2 if if R1(t) > R2(t), and extrapolate it as a deployment rule into the future. While this
protocol will not usually produce an optimal policy, in the next section we show that it can
produce effective rotational protocols that are superior to antibiotic mixing. As a result,
the control strategies that we deploy to combat the evolution of resistance in (1) and (2),
as motivated by the above analysis, are defined as the following feedback control laws:

Rule 1: in Problem 1 continue with the present antibiotic but if ya(t) > yb(t) then switch
to antibiotic B, if yb(t) > ya(t) switch to A.

Rule 2: in Problem 2 use antibiotic 2 if R1(t) > R2(t), otherwise use 1.

One further concept needed to complete the definition of the feedback controls is the
idea of a sample time. The variable t in Rule 1 and Rule 2 may refer to all instances of time
or t could be a sample time whereby the control decision is taken periodically or at some
other prescribed instants in time. In the numerical examples of the next section we take the
latter approach due to its practical relevance to managing antibiotic use in hospitals and
ask how often must the system be sampled so that the feedback rules outperform antibiotic
mixing? This can be interpreted in the sense of how much information do we need so
that a protocol based on exploiting that information outperforms protocols founded on no
information at all, like cycling and mixing.

4. Rotation Outperforms Mixing: Numerical Examples

The first numerical example, illustrated in Figure 2, provides a comparison of equation
(1) for symmetric and asymmetric parameter sets, where optimal mixing is compared with
a sequence of cycling protocols. In the symmetric case of Figure 2(a) where 50-50 mixing
provides the optimal mixing protocol, the protocols that cycle between the two antibiotics
are inferior to optimal mixing; note that the optimal protocol itself is not known for these
parameters so this figure is a comparison of several sub-optimal protocols. In Figure 2(b)
where asymmetric parameters are used (the values in (p(2), s

(2)
0 )) and 50-50 mixing performs

poorly as a result, a range of cycling protocols biased to one of the drugs outperform optimal
mixing provided each cycle occurs sufficiently quickly.
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Figure 2. Two different parameter sets, one symmetric and one asymmet-
ric, are used in Problem 1 to compute the response to the cycling protocols
shown in the right-hand column and mixing protocols: in (a) the symmetric
parameter values are taken from [2] but in (b) we used the asymmetric set
(p(2), s

(2)
0 ) defined in this paper, taking T = 50 in both cases. The (red) mix-

ing and (black/solid) cycling lines in the two figures illustrate that cycling
protocols may be outperformed by the optimal mixing protocol and vice
versa (the symmetric case (a) and the asymmetric case (b), respectively).
(The dashed lines in (b) are a reproduction of the data from (a); the cycling
protocols used in (b) are biased towards more frequent use of one of the
drugs whereas the cycling protocols in (a) may be described as 50-50.
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The purpose of this computation is to show that cycling and mixing protocols cannot
be compared in any definitive sense: cycling can beat mixing and vice versa, the precise
nature of the comparison depends on the structure of the cycling itself and on the numerical
parameters used in the mathematical model.

Figure 3 shows the result of a numerical computation that deploys an optimisation
algorithm to determine the best rotational protocols where the asymmetric parameter set
(p(1), s

(1)
0 ) has been used to parameterise the model (1). While both antibiotic rotation

protocols outperform optimal mixing, if only by relatively small amount with less than 1%
difference, the dynamics of antibiotic rotation shown as black lines exhibit spikes whereby
drug resistance can increase sharply after the introduction of a new antibiotic regime.
Nevertheless, it is with rotational protocols, and not through mixing protocols, that we
can minimise the performance measure defined in [3].

Figure 4 shows one outcome of applying Rule 1 to Problem 1 using the same asymmetric
parameter values as Figure 3 where it is evident that the rule-based control measure is
superior to optimal mixing even though the rule only implements seven switches of antibi-
otic. Figure 5 is an analogous computation that implements Rule 2 on Problem 2 using
parameters (p(2), s

(2)
0 ). Similarly, the rule-based controller produces rotational protocols

that outperform optimal mixing.
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Figure 3. Rotational protocols outperform antibiotic mixing. For a treat-
ment duration of T = 50, the PICS used to simulate (1) is (p(1), s

(1)
0 ): the

best 5 and 6-switch controls achieve treatment objectives of 1259 and 1257
patients, respectively, optimal mixing is worse at 1260 and 50-50 mixing is
worse still at 1506 patients.
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Figure 4. Rule 1 applied to (1) with T = 50 and 23 maximum possible
switches. (a) The state obtained using Rule 1 has a performance of 1252
patients, less than optimal mixing strategy (1261) and 50-50 mixing (1506).
(b) Comparison of the running treatment objectives (the function ya(t) +
yb(t) +yw(t)) of optimal mixing (blue line) and 50-50 mixing (red line) with
the rule-based feedback treatment (black line). As the black line is lowest
on average, the feedback outperforms all mixing protocols.
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5. Discussion

This paper demonstrates that antibiotic mixing can optimally reduce the prevalence
of drug-resistant pathogens in existing mathematical models of antibiotic use only when
symmetries are present in the model, if those symmetries are broken, antibiotic rotation
is optimal. While numerical optimisation techniques can be used to determine effective
rotational protocols for specific model instances defined in (1) and (2), of greater practical



ROTATING ANTIBIOTICS IS OPTIMAL 21

Figure 5. Rule 2 applied to (2) when T = 50 and 25 maximum possible
switches. (a) The state response obtained Rule 2. (b) The running treatment
objective (the function R1(t) + R2(t)) obtained using 50-50 mixing (shown
in red, with treatment objective equal to 15), optimal mixing (blue, treat-
ment objective close to 11.7) and the rule-based feedback (black, treatment
objective close to 11.61).
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Figure 6. Comparing the performance of optimal mixing (blue), 50-50
mixing (red) with Rule 1 and Rule 2 (boxes). The filled boxes illustrate the
number of sampling points for which the rules-based contollers outperform
optimal mixing. The asymmetric parameter sets used for these simulations
are defined in the text and T = 50 for both models (1) and (2), any number
from 1 to 50 sampling points were used with at most one sample per unit
time. Diagram (a) shows results obtained for (1) and (b) are results for (2).
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importance are the rule-based feedback controllers that invoke an exchange of antibiotics
when resistance to the present one is observed to be high. While such simple rules cannot
produce optimal deployment policies, they can reduce the incidence of infection below what
is possible with mixing protocols. Moreover, an important robustness property follows from
linearity of models (1) and (2) with respect to their control variables, fa and A respectively.
This property ensures that all rotational protocols sufficiently close to the true, and usually
unknown, optimal control will perform nearly as well the optimum, providing a degree of
protection against errors in the implementation of the optimal policy.

Finally, in Figure 6 both Rules 1 and 2 have been applied to equations (1) and (2) in
the search for suboptimal rotational protocols that outperform antibiotic mixing. With a
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time parameter T of fifty units, no more than N switches of antibiotic were allowed on
any given simulation and the dynamical systems (1) and (2) were sampled T/N time units
apart to make the deployment decision as to which antibiotic would be used until the next
sample. The sampling parameter N is shown along the horizontal axis in Figure 6 where it
is labelled as sampling points and both diagrams in the figure show that the performance
of these rule-based controls (as plotted on the vertical axis) improves dramatically with
increasing N , although not monotonically. In both cases a value of N is reached above
which the feedback rules Rule 1 and Rule 2 outperform optimal mixing. We deduce from
this computation that there are infinitely many alternating protocols superior to optimal
mixing.
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