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Abstract. How does the supply of energy affect the diversity of an evolving mi-

crocosm? Two competing informal arguments might be proposed: an increase in

energy boosts the proportion of energy-inefficient, fast-growing specialists thus re-

ducing diversity. Or, a greater energy supply can support more niches that may, in

turn, be exploited by a greater diversity of species.

We approach this question from the perspective of an evolutionary microcosm

containing a co-evolving host and pathogen. The host is the bacterium E.coli B

(strain EL606) and the pathogen is its bacteriophage, T3, supported by an environ-

ment whose limiting hydrocarbon resource is glucose. We perform a mathematical

and experimental study of the biodiversity supported by this model system and

propose that both hypothesised relationships are possible: diversity can be both

negatively and positively correlated with energy supply. Moreover, the precise de-

tails of how this relationship is manifested in this model system depends crucially

upon molecular and genetic details of the interaction between the host and its viral

parasite.

1. Introduction: the Beagle in a bottle

Natural ecosystems consist of many species interacting through diverse mechanisms,
some of which may see one organism increase its reproductive ability to the detriment
of another. This type of interaction occurs between predators and their prey and
between pathogens and their hosts. Antogonistic coevolution is said to take place
in a host-pathogen system whenever a defense strategy brought about in the host is
countered by the evolution of a concomitant strategy in the pathogen, leading to an
arms race often called the Red Queen effect [34].

Although antagonistic coevolution has been observed in natural ecosystems [38, 7],
reproducing observations is difficult. Complex organisms often have small population
sizes and long reproduction times, necessitating observations over many years and
often leading to an incomplete fossil record.

Hoping to overcome such difficulties, evolutionary researchers have turned to the
idea of The Beagle in a Bottle [4], laboratory microcosms of microbial populations
that can be used to pinpoint the biological processes that generate and maintain
diversity [8, 15, 5, 3]. Due to their large population sizes and short generations, do
novo evolution can be observed within weeks over thousands of generations.
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1.1. Productivity: diversity and energy. The purpose of this paper is to use a
chemostat-based experimental microcosm to ask how changes in resource availability
mediate the diversity observed in coevolving bacteria and bacteriophage populations.
Moreover, resource availability in microbial experiments may be considered as an
analogy of productivity in nature since it measures the energy available for conversion
into biomass [5].

Discerning the relationship between productivity and diversity has been a major
challenge in ecology and is thought to be a prerequisite to understanding patterns of
diversity observed both within and across ecosystems [36]. Previous studies conducted
on large data sets and spanning a range of geographical scales and species have revealed
that this relationship can exhibit a positive correlation, a negative correlation, or be
more complex still and several explanations for such variation have been proposed
[18, 25, 13].

Previous laboratory studies of microbes competing for resources in spatially ho-
mogenous environments have shown that diversity can increase monotonically as a
function of productivity and that spatial structure may be needed in order to observe
a unimodal relationship between diversity and productivity [17, 5]. In [13], the authors
invoked heterogeneous resource supply as an explanation of such unimodal patterns.
In contrast to these findings, a recent study of the bacterium E.coli B and its viral
parasite, the T3-bacteriophage, undertaken by the present authors revealed that an-
tagonistic coevolution can result in a unimodal or multimodal relationship between
bacterial diversity and productivity [11]. The contribution of this paper is to provide
details of the mathematical framework used in that experimental study.

In addition to their value as model systems for probing coevolutionary processes in
general, bacteria-bacteriophage interactions are important in their own right. Bacteria
constitute a vast proportion of the total DNA in the oceans [9] and they are major con-
tributors both to primary production and to the cycling of nutrients through trophic
levels [22]. As part of the microbiota, they also constitute about 99% of the total
DNA in the human body where they process nutrients and protect the human host
against diseases such as forms of colitis [23]. Bacteriophage not only regulate microbial
population sizes but also their rate of adaptation and thus also impinge upon carbon
and nutrient cycling and pathogenic diseases through the destruction of their hosts.

There is an increasing commercial interest in antibacterial treatments that use bac-
teriophages [32]. Although bacteriophage therapy has been an active field of research in
the former Soviet republics, it received little attention in the West due to the advent
of broad spectrum antibiotics [19]. However, the widespread use of antibiotics has
resulted in the emergence of antibiotic-resistant bacterial strains and phage therapy
is being taken seriously as a possible alternative for certain infections. The use of
synthetic phage [20, 21] may, in time, make phage therapy a practicable alternative
to antibiotics for such infections.
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1.2. Description of the experimental model system. Bacteriophage are the
viruses of eubacteria. The initial phase of infection of the bacterial host by the virus
is adsorption, a process that takes place in at least two stages. First, specific pro-
teins on the phage bind to receptor molecules such as the antigenic lipopolysaccharide
(LPS) polymers (whose chemotypes are illustrated in Figure 1), lipoproteins or tei-
choic acids on the surface of the bacteria. This initial binding can be irreversible and
electrostatic in nature [27] and is highly specific, meaning each species of phage can
adsorb to only a small number of molecules on a limited number of bacterial species
[29]. For example, the coliphage T4 is known to adsorb only to the LPS backbone on
E.coli, a biopolymer used by the bacterium to maintain its structural integrity and
impermeability [28], while the λ-phage is known to bind to the lamB maltoporin on
E.coli.

heptose
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(in outer
membrane)

wild typeresistance mutations

LPS
backbone

waaA−→ Re waaC−→ Rd2 waaF−→ Rd1 waaG−→ Rc waaO−→ Rb waaR−→ Ra waaU−→ LPS K12(a)

(b)

Figure 1. (a) Biosynthesis pathway for the lipopolysaccharide (LPS)
biopolymer and (b) an illustration of the intermediate chemotypes that
differ in their T3 resistance. In (a), names of the genes encoding the
enzymes that calatalyse the reaction steps are shown above the arrows
and the designated names for the chemotypes are shown between the
arrows [28].

Bacteria can gain resistance to phage through genetic mutations that lead to struc-
tural changes in the receptor molecules used by the phage during adsorption. As these
molecules have various roles within the bacterial metabolism, mutations may affect
the ability of the bacteria to function and replicate and so resistance mutations may,
but not always, come with a fitness cost to bacteria.

The initial binding may be followed by a secondary, irreversible binding between
the bacterium and specific proteins on the phage within the capsids or tail fibres,
depending on the specific phage [29]. Adsorption is then followed by injection of the
phage genome into the bacterial cytoplasm directly through the membrane or through
specific outer-membrane proteins (OMPs), after which the phage life cycle can follow
one of at least two paths depending on the type of phage involved.
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If the phage is of the lytic or virulent kind, it uses the bacterial metabolism to make
copies of the viral genome and the proteins which constitute its structural components.
Subsequently, these molecules self-assemble into complete phage particles and exit the
cell with the help of enzymes that degrade, or lyse, the bacterial membrane. The
bacterial cell is destroyed in this process and the number of phage particles or virions
produced per bacterial death is termed the burst size.

If the phage is of the lysogenic or temperate kind, its genome can be incorporated
into the bacterial genome and it can remain there as a prophage, replicating with
the bacteria until such time as the environmental conditions favour the return of the
prophage to the lytic state. Other phage types exist too, such as the filamentous M13
phage synthesised in [21] that can replicate without lysing the bacterial cell.

The fitness cost of resistance to phage attack is usually expressed as a reduction
in bacterial growth rate [3]. However, it is essential to note that because of the
metabolic and physiological function of the phage target molecules, the precise nature
of any fitness cost may depend crucially on the resources present in the environment.
Thus, in order to ensure that mutations necessarily come with an associated fitness
cost to the bacteria, we study a microcosm containing E.coli B with T3 phage under
glucose limitation. The evolutionary dichotomy for the bacteria is the following: a
genetic mutation that truncates the LPS polymer will impair the ability of the cell to
metabolise glucose, however, it will also reduce the likelihood of being lysed by the
phage. So, which evolutionary outcome will result from this interaction?

1.3. Notation. We make extensive use of the n-dimensional vectors 1 = (1, . . . , 1)
and 0 = (0, . . . , 0) throughout. Given u = (u1, ..., un),v = (v1, ..., vn) ∈ Rn, the
inequality u ≥ v will be used to mean uj ≥ vj for all j, u > v will be used if u ≥ v
but uj > vj for some j, while u� v will be used when uj > vj for all j. Their inner
product will be represented by (u,v) and therefore (1,v) = ||v||1 =

∑n
i=1 vi for v ≥ 0.

Pointwise operations of multiplication and division will be written without reference
to any binary operator, so uv = (u1v1, . . . , unvn) and u/v = (u1/v1, . . . , un/vn).

For a linear map or matrix A : Rn → Rn, ρ(A) will denote its spectral radius, N(A)
its null-space and R(A) its range. Given a vector u ∈ Rn, diag(u) will refer to the
diagonal n× n matrix with entries: (diag(u))ii = ui for i = 1, ..., n.

The term diversity measure will refer to any scale-invariant, permutation-invariant
and positive functional H : Rn → R that is continuous away from zero, maximised at
the ‘uniform state’ and and minimised at the competitive exclusion state:

H(1, 1, ..., 1) = sup
v>0,v∈Rn

H(v) and H(1, 0, ..., 0) = inf
v>0,v∈Rn

H(v).

We therefore also require H to satisfy H(sv) = H(v) and H(Pv) = H(v) for all v ∈ Rn

with v > 0, for all permutations P and all scalars s > 0.
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Common diversity measures are entropy, or the so-called Shannon-Wiener diversity
index, Hsw(v) := −∑n

i=1 ln (vi/(1,v)) vi/(1,v) and Simpson’s index

Hs(v) := 1− (v,v)/(1,v)2.

2. A Mathematical Model

We shall define a mathematical model of E.coli-T3 phage coevolution in the chemo-
stat based on the following assumptions:

(A1.) The chemostat has a constant dilution rate.
(A2.) Bacterial cells require many resources but only one hydrocarbon source is

limiting and it is fed into the chemostat at the dilution rate. Furthermore,
this limiting nutrient has no inhibitory effects on the bacteria at high con-
centrations, thereby the bacterial growth rate increases monotonically with
increasing resource concentration.

(A3.) Each bacterial cell belongs to one of a fixed number of genetically distinct
types. Types differ in the structure of their outer membrane proteins and
polysaccharides involved in phage and resource adsorption, they therefore
have different growth rates and different abilities to resist phage infection.

(A4.) Each phage belongs to one of a fixed number of genetically distinct types.
Phage types differ in the structure of their tail proteins and thus in the range
of bacterial types they can infect, the rate at which they adsorb to different
bacterial types and in their burst sizes.

(A5.) The chemostat is well mixed, ensuring that the concentration of the limiting
nutrient is uniform in space and the rate of encounter between a phage particle
and a bacterial cell follows a mass-action law.

(A6.) Phage types are obligately lytic and all successful adsorption events lead to
bacterial death.

(A7.) After binary fission and virion assembly, respectively, there is a small but
non-zero probability that offspring bacteria and phage will be of a different
type to their parent.

Assumption A5 was verified empirically for T4 phage, up to a concentration of
5×108 bacterial cells per millilitre [12] some time ago, which justifies its use here. One
can employ further assumptions to simplify or widen the particular class of models one
defines. For example, there is a hierarchy of possibilities relating to A6 and A7. One
might, for example, ask how important the latent period is in the phage replication
process. This is the time taken to synthesise and assemble phage proteins into a
complete virion and its inclusion may require a time delay, a complicating factor we
chose not to include in our models below.

Assumption A7 states that genetic mutations occur during reproduction. However,
since phage reproduction occurs within a bacterial cell, one might also ask how the
architecture of the host influences phage mutations. In this paper we will make the
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simplifying assumption that mutations in the phage genome are independent of the
type of the bacterial cell in which phage replication takes place. Moreover, horizontal
gene transfer and the mechanisms that support it will be neglected entirely. We also
assume for simplicity that assembled virions are stable in the liquid medium of the
culture vessel and do not decay, but this can be weakened in our analysis below.

2.1. Genetics: mutational assumptions. Suppose for simplicity that there are
n possible bacterial types. In accordance with A7, when a bacterial cell of type
j ∈ {1, 2, ..., n} divides there is a non-zero probability that one of its two daughter
cells will be of type i ∈ {1, 2, ..., n} and we denote this probability by mij , so that

mij = P (daughter bacterial type = i|parent bacterial type = j ∩ a mutation occurs).

It follows that mii = 0 and that 0 ≤ mij ≤ 1 with
∑n

i=1mij = 1 for all j.
Define the diagonal matrix E = diag(ε1, ..., εn) where εj is the per unit time, per cell

mutation rate of bacterial type j and set M = (mij). We will callM := I+ (M − I)E
a mutation operator and M a mutation process. If E = εI, so that the mutation rate
is the same for all types, then we will write

Mε = I + ε(M − I)

to emphasise the dependence on ε.
As 1TM = 1T and so 1TMε = 1T for all ε ∈ (0, 1), if M is an irreducible matrix

then there is a unit 1-norm vector ν ≥ 0 independent of ε such that Mν = ν and
therefore

Mεν = ν, (1,ν) = 1,

this follows from the Perron-Frobenius theorem. We shall further assume throughout
that M− I is strictly negative definite with respect to its invariant space V := 〈1〉⊥

in the sense that

(1) ρ0 := − sup
v∈V,‖v‖2=1

((M− I)v,v) > 0.

2.2. The coevolutionary model. Consider the following system of differential equa-
tions,

db

dt
=M (B(S)b)− db− (Φp) b,(2a)

dp

dt
=Mp

(
β
(
ΦTb

)
p
)
− dp,(2b)

dS

dt
= d(S0 − S)− (U(S), b) .(2c)

Here b = (b1(t), . . . , bn(t))T and p = (p1(t), . . . , pn(t))T are non-negative vectors con-
taining the density of bacterial cells and phage virions per millilitre, respectively, and
β = (β1, . . . , βn)T is the positive vector of phage burst sizes. Furthermore, Mp de-
notes an irreducible phage mutation operator constructed analogously to the bacterial
mutation operator M.
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To each bacterial type i we assign its growth rate Bi(S), a function of the nutrient
concentration S and of the inherited trait through the index i. By assumption A3 we
impose the following conditions on Bi(S) for i ∈ {1, ..., n}:

(B1.) Bi(S1) < Bi(S2) when 0 ≤ S1 < S2,
(B2.) Bi(S) = 0 if and only if S = 0 and
(B3.) limS→∞Bi(S) = Bi for a positive, finite constant Bi.

For convenience later, let us define the vector of maximal growth ratesB := (B1, B2, ..., Bn).

Remark 1. We will make extensive use of the bounded, monotonic increasing Monod
function

(3) Λ(S) :=
S

K + S

throughout the paper.

1 432

1 432

(a)

phage

bacteria

1 432

1 432

(b)

phage

bacteria

1 432

1 432

(c)

phage

bacteria

1 432

1 432

(d)

phage

bacteria

Figure 2. Graphs illustrating bacteria-phage cross-resistance: (a)
matching alleles, (b) imperfect lock-and-key, (c) gene-for-gene and (d)
modified gene-for-gene adsorption mechanisms. The nodes represent
bacteria and phage types while an arrow from a phage type to a bac-
terial type indicates that the phage type can adsorb to that bacterial
type. Dashed arrows in (b) represent small adsorption rates. Note
that (c) does not have the red arrow highlighted in (d), this difference
ensures that (d) is not a strict gene-for-gene model.

2.3. The genetics of adsorption: the matrix Φ. In studies of host-pathogen
interactions it has been proposed that infection mechanisms are to be found on a
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continuum that ranges from the gene-for-gene to matching alleles mechanisms [1]. The
former assumes that each phage type has a bacterial type to which it preferentially
binds, as depicted in Figure 2(a/b), the latter is less straightforward and is depicted
in Figure 2(c).

The logic of the gene-for-gene interaction is based on the following rationale. Sup-
pose that the bacterial genome carries one of two alleles at two different loci and
denote these alleles by S and R, which stand for susceptible and resistant to infection,
respectively. Suppose that the phage genome also has two loci, each of which can
carry the alleles V and A that represent virulent and avirulent infection strategies.
This system contains a total of four bacterial types and four phage types, whence their
adsorption matrix Φ is a 4× 4 matrix.

Now define an ordering of these alleles in the sense that

V
infects
> R

resists
> A

infects
> S,

and assume that each phage type is defined by the pair of alleles (P, p). Consider a
rule which states that a phage infects a bacterium, itself defined by the ordered pair
(B, b), if and only if both

(P > B) and (p > b),

where P, p ∈ {V,A} and B, b ∈ {S,R}.
So, for example, both phage types (V,A) and (V, V ) can infect bacterial types (R,S)

and (S, S). One can describe the logic of this particular infection process succinctly
with the adsorption matrix

ΦG4G = θ ·




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1




and this is called a gene-for-gene interaction. The constant θ in ΦG4G is a baseline
value for the wild-type bacteria-to-phage adsorption rates [12].

Suppose that the wider the range of bacterial types a phage type can infect, the
lower its adsorption rate must be to each of the bacterial types. Such a trade-off
that describe the costs of virulence and resistance can easily be incorporated into the
adsorption matrix, Φ, and [1] includes structures to account for this. For example,
the adsorption matrix given by

Φg4g = θ ·




1 1
2

1
2

1
4

0 1
2 0 1

4

0 0 1
2

1
4

0 0 0 1
4




can be obtained by setting a = 1 and k = 1
2 in Table 1 of [1] and it incorporates the

aforementioned trade-off.
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The adsorption mechanisms between phage and bacterium depend on a variety
of molecular interactions and are not known in any generality. The matching alleles
mechanism is believed to arise when adsorption has a high degree of specificity [37]. For
example, the interaction between the λ-phage and the lamB maltoporin on E.coli has
been hypothesised to be an imperfect lock-and-key mechanism that one can view as a
form of approximate matching alleles interaction [37]. The matching alleles mechanism
is represented by a diagonal matrix and if, in addition, the adsorption rates between
all bacteria and phage types are equal, in this case one can write

ΦMA = θ · I4×4,

where I4×4 is an identity matrix.

3. A Case Study: an E.coli-T3 Coevolutionary Experiment

We performed a series of coevolutionary experiments to probe how changes in re-
source availability would mediate the observed diversity of bacteria and phage. The
experiments were conducted in chemostats with a constant dilution rate using the host
bacterium E. coli B(EL606) with glucose as the limiting resource and using T3-phage.
We now summarise the outcome of that experiment and its main results, referring to
[11] for complete details of the experimental methodologies.

Samples were taken from the chemostats at three and nineteen days, the latter at
about 150 bacterial generations. Those samples were screened for bacterial strains
resistant to the wild-type phage and for the existence of genetic mutations that are
known to result in alterations in the LPS antigen and membrane-bound ompF and
ompA proteins. This was done using a variety of reference phage that are known to
target these molecules as binding sites.

The resulting data was used to determine the frequency of OMP and LPS mutations
found in bacteria isolated from the chemostats at the end of the 19-day period. Thus a
measure of system ‘diversity’ could be calculated by determining the relative densities
of bacterial cells that possessed structural changes in LPS, outer-membrane proteins
or both, giving a total of four bacterial phenotypes.

3.1. Experimental observations: summary. At very low glucose concentrations,
specifically when S0 � 10µg/ml, the phage population cannot be supported and
so the wild-type E.coli cannot coevolve with T3. As a result, no experiments were
conducted at such low concentrations.

At higher glucose supply concentrations, S0 ≥ 10µg/ml, Figure 3(left) illustrates
the main experimental outcome in terms of the mean observed frequencies (taken over
three replicates) of each bacterial mutant at ‘low’ and ‘high’ resource supply levels.
We highlight the following features of the data:

• At S0 = 10µg/ml, Figure 3(left/LOW) shows that three bacterial strains are present
in this environment and the dominant strain is one with alterations in both its LPS
and OMP structure.



10 R. E. BEARDMORE, S. S. ARKIN, S. E. FORDE, AND I. GUDELJ

1.0

0.6

0.2

P
ro

p
o

rt
io

n
o

f
b

a
ct

e
ri
a

l t
yp

e
s

LOW HIGHLOW HIGH

P
h
a
g
e

a
b
u
n
d
a
n
ce

o
n

e
a
ch

b
a
ct

e
ri
a
l t

yp
e

(p
fu

)

resource supplyresource supply

OMP
LPS
LPS+OMP

50

100

Figure 3. Experimentally-observed mutants at day nineteen: fre-
quency of different bacteria (left) and the abundance of phage on these
strains (right) at two different glucose supply values. (LOW means
10µg/ml and HIGH means 1000µg/ml. A bar represents one standard
error. The wild-type bacteria were not detectable and are therefore
absent from the left-hand figure.)

• At S0 = 1000µg/ml, Figure 3(left/HIGH) shows that bacterial diversity (measured
by Simpson’s index) is lower than microcosms for which S0 = 10µg/ml as the device
no longer supports OMP-only mutants. Here, the dominant bacterial strain has the
LPS-only mutation and the bacterial type with both LPS and OMP alterations is
subdominant.

Observe that the wild-type E.coli strain does not appear at all in Figure 3(left) as
it could not be isolated from the microcosm at measurable densities. Figure 3(right)
shows the phage abundance in terms of plaque forming units obtained using phage
isolated from the chemostat at day nineteen when tested on each of the four different
bacterial types. This diagram does not, however, illustrate phage diversity. The
latter could not be measured using this data as host-range phage mutants could not
be isolated.

We summarise Figure 3 with the following coarse statement: higher concentrations of
abiotic resource supply support lower bacterial diversity.

3.2. A model specific to E.coli and T3. We will assume for simplicity that just
three mutant bacteria and phage are possible in (2), in addition to the wild-type, and
so we set

b = (b0, b1, b2, b3) and p = (p0, p1, p2, p3);

the subscript zero in either of the two vectors b and p denotes the wild-type.
The phage mutation processMp in (2) is based on the Jukes-Cantor 69 substitution

model (JC69) [16, 10] and, in the absence of clear evidence supporting the use of other
mutational models, we use it to represent changes in the phage genotype that regulate
the expression of tail-fibre proteins. We will assume for simplicity that a single locus
within the phage genome encodes one of four alleles corresponding to four different
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tail-fibre configurations. We further assume that mutations change the allele at this
locus to any of the four allowed with equal probability. So, we define

Mp =
1
3




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




and then set Mp := I + ε(Mp − I).

We will use a standard point mutation structure on two independent loci for M in
(2). One locus codes for the LPS structure, the other codes for the OMP structure.
For these two loci, OMP and LPS that we will write as O and L for brevity, we assume
that O and L take values in {0, 1}, where a ‘1’ in either locus denotes a mutation with
respect to the wild-type. Thus, OL-pairs take values in the set G = {00, 01, 10, 11}
and we now require a mutation process on G.

The first part of this process, M1 describes the change in genotype that occurs
when only one mutation occurs at some locus, the second, M2, describes the change
in genotype that occurs when two mutations occur simultaneously at different loci.
Thus, we set

M1 =




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




and M2 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




and define

M := I + ε(M1 − 2I) + ε2(M2 − I).

Both Mp and M are symmetric stochastic matrices and so their invariant density is
given by ν = 1

4(1, 1, 1, 1)T .
It is known that genes controlling LPS synthesis and outer-membrane protein as-

sembly interact pleiotropically because of a biophysical interaction: some OMPs do
not trimerise to form porins unless LPS has a certain minimal structure [30]. It is also
known that mutations in genes associated with OMP synthesis can alter the nature
of the LPS expressed [35]. Although it is impossible to capture such detail in a model
like (2), in order to include a sense of these very complex interactions, we introduce
a phenotype `(L,O) to describe the ordering of susceptibilities of different bacterial
types to each T3 type.

As there is a correlation between the length of the LPS backbone expressed by a
bacterial cell and the susceptibility of that cell to T3 attack, the relative rank of this
susceptibility will be determined by the value of the phenotype

`(L,O) := 4− (2 · L+O).

This provides four bacterial phenotypes: the wild-type b0 with (L,O) = (0, 0) and so
` = 4 has the longest LPS backbone and is susceptible to the highest number of T3
types. Then there is b1, the OMP-only mutant with (L,O) = (0, 1) and ` = 3, there



12 R. E. BEARDMORE, S. S. ARKIN, S. E. FORDE, AND I. GUDELJ

is an LPS mutant type b2 with (L,O) = (1, 0) and ` = 2. Finally we have b3, the
OMP+LPS mutant type with (L,O) = (1, 1) and ` = 1, this has the shortest LPS
backbone and so is resistant to largest number of T3 types among all the bacterial
mutants.

3.3. T3 - E.coli B adsorption genetics. We implemented a resistance-growth rate
trade-off for this microcosm whereby an increase in the range of resistance to phage
through changes in LPS structure leads to a decrease in growth rate due to a loss of
affinity for glucose [11, 2, 33, 26]. As a result, wild-type E.coli B is the least phage-
resistant bacterial type but it has the highest uptake rate of glucose, while b3 is the
most resistant type but it has the lowest uptake rate of glucose.

We also assume an infectivity-growth rate trade-off in the phage whereby an in-
crease in the number of hosts a phage can infect comes at a reproductive cost [6, 24].
Therefore wild-type phage has the smallest host range but the highest adsorption rate
and burst size, whereas p3 has the largest host range but the lowest adsorption rate
to each bacterial type and the lowest burst size.

In order to mimic the ‘cooperation process’ between T3 tail fibres and the LPS
molecule of E.coli B alluded to in [29], we assume that a mutation at either locus, L
or O, reducing LPS length also reduces the binding affinity of the cell for every phage.
Moreover, we assume that there is a certain LPS truncation beyond which no phage
mutant can adsorb to the cell, apart from a highly virulent phage, p4.

This, as with gene-for-gene systems, yields a triangular structure for the adsorption
matrix Φ. We included two infectivity parameters µ and ν in the definition of the
experiment-specific Φ, each parameter describes the rate of decrease of adsorption
rate with each bacterial mutation and the analogous rate of increase with each phage
infection. These changes are assumed to follow a power-law distribution with respect
to LPS length, resulting in the matrix

(4) ΦmG4G(ν, µ) = θ




1 µ µ2 µ3

0 νµ νµ2 νµ3

0 0 ν2µ2 ν2µ3

0 0 0 ν3µ3



.

Hence if ν ∈ (0, 1), ΦmG4G(ν, µ) encodes a resistance-growth rate trade-off of the
bacteria, while because of the ordering of the entries in the vector β, µ ∈ (0, 1)
corresponds to an infectivity-burst size trade-off in phage; note that the adsorption
rate of wild-type bacteria to wild-type phage in (4) is given by θ := 2 ·10−8 ml/cell/h.
The remaining parameters, ν and µ, are as yet unknown and are to be determined
from a data-fitting procedure.

We say that the matrix ΦmG4G represents a modified gene-for-gene interaction ma-
trix because it has a sparsity pattern that differs from ΦG4G and Φg4g in only one
entry; this is the bold highlighted entry in the matrix (4), an entry that is zero in the
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Table 1. The parameters used in the mathematical model (2) that
produced the comparison with empirical data shown in Figure 3; pa-
rameters were determined either from the literature or further experi-
ments (as described in [11]).

parameter description value

µmax maximal growth rates (1.18, 1.009, 0.89, 0.66) h−1

C growth yield 4.35× 104 cells/µg
K bacterial half-saturation constant 0.06 µg/ml
β burst sizes (306, 153, 99, 72) virions
d dilution rate 0.2 h−1

ε mutation rate 10−4 cell−1division−1

θ wt-to-wt adsorption rate 2 · 10−8 ml/cell/h
ν, µ fitted adsorption parameters ν = 0.636, µ = 0.94

gene-for-gene interactions of [1]. Strictly speaking, therefore, ΦmG4G is not a gene-
for-gene adsorption matrix even though it describes an expanding host range of the
evolving phage.

3.4. Comparison of model with experiment. We now compare the relative rank
abundances obtained using the mathematical model (2) to those obtained empirically
and shown in Figure 3. For this purpose, equation (2) is deployed with the model
parameters that define the four-phenotype model detailed in this section and defined
in Table 1.

So, the glucose uptake rates of bacterial types are given by the vector U(S) :=
Vmax ·Λ(S), where Vmax is the maximal resource uptake rate and is defined by µmax/C.
The Monod function Λ(S) was defined in (3) and its form ensures that all bacterial
types have the same glucose half-saturation constant K. We assumed that all bacterial
cells have the same growth yield C and so bacterial growth rates are provided by the
vectorB(S) = µmax·Λ(S). Finally, we implemented the modified gene-for-gene matrix
ΦmGFG(ν, µ) within the model.

The mutation rate parameter ε for this modelling framework cannot be easily related
to per-genome or per-nucleotide mutation rates. For this model, it was simply reduced
to the smallest value for which equilibrium solutions of (2) could be reliably computed
for all necessary values of S0 using a continuation-Newton algorithm.

Other parameters were taken either from previous literature or found using calibra-
tion experiments detailed (see [11] for details). The infectivity parameters ν and µ

were obtained from a fitting procedure whereby the relative abundances at equilibrium
of each mutant were computed using (2) at S0 = 10µg/ml and S0 = 1000µg/ml. The
infinity-norm distance between the computed relative rank abundances from the model
was then minimised with respect to the empirical rank abundances, thus providing
the values of ν and µ in Table 1.
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Figure 4. (a) Equilibrium densities (per ml) of bacteria and phage
mutants showing their dependence on S0 computed using the param-
eters given in Table 1 deploying the modified gene-for-gene model
ΦmGFG(ν, µ) within equation (2). (b) A comparison of experimentally-
obtained rank abundances taken from Figure 3, here shown without
error bars on the left, with rank abundances found in the model taken
from (a) above and shown on the right.

Figure 4 compares the bacterial rank abundances found using model and experiment
for two values of the resource supply, namely S0 = 10µg/ml and S0 = 1000µg/ml.
Figure 5 shows the bacterial and phage densities at equilibrium as a function of the
resource supply parameter S0 computed using (2) with the parameters given in Table
1.

We conclude from this comparison that the relative rank abundances of equilibria
of the model (2) are consistent with those observed empirically. Figure 4(a) then
predicts the experimental rank abundances at all resource concentrations between 1
and 1000 µg/ml. There are two clear predictions:

1. the variation in bacterial diversity is greatest for S0 < 10µg/ml, moreover
both bacteria and phage diversity eventually decreases as S0 gets sufficiently
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large (as seen in Figure 5 where this is demonstrated for two diversity mea-
sures).

2. Bacterial diversity is close to a constant value for values of S0 between 30 and
1000 µg/ml.
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Figure 5. Bacteria (black) and phage (blue) diversity patterns are
shown for the Shannon-Wiener diversity index here denoted H(·); the
variation in diversity is greatest in the hatched region. The fraction of
unmetabolised resource, (S0 − S)/S0, is shown in red.

4. Mathematical Results

We begin this section with a simple existence and uniqueness result for (2), the
purpose of which is to give a point dissipative bound in a weighted norm that will
prove useful later. Throughout the remainder we shall assume, unless explicitly stated
otherwise, that

B(S) = µmax · Λ(S) and U(S) = Vmax · Λ(S),

whereby µmax = C · Vmax. We recall that µmax is the maximal growth rate of a cell,
Vmax is the maximal resource uptake rate and C is the growth yield. All systemic
parameters, ε, d and S0 for example, are all assumed to be positive throughout the
remainder, also the mutation processes M and Mp are non-negative and irreducible.

We reiterate an earlier remark that from the form of Λ(S) it follows that all bacterial
genotypes have the same affinity for the limiting resource, moreover they all have the
same growth yield parameter, C. This assumption is not necessary and many results
can be derived without it, but it helps simplify the following analysis in several places.

Proposition 1. For each initial datum (b(0),p(0), S(0)) satisfying S(0) ≥ 0, b(0) ≥ 0
and p(0) ≥ 0, (2) has a unique solution that is strictly positive for t > 0. Moreover
for each δ > 0 there exists a tδ > 0 such that

(5) (1, b(t)) +
(1,p(t))
||β||∞

+ C · S(t) ≤ C · (S0 + δ)
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for all t > tδ.

Proof. Existence and uniqueness of solutions of (2) is standard, their strict positivity
follows from the irreducibility assumptions on M and Mp and the positivity of S(t)
whenever S(0) ≥ 0 follows from the form of (2c). Let us define

Σ(t) := S(t) +
1
C

(
(1, b(t)) +

1
||β||∞

(1,p(t))
)
− S0

and observe that along solutions of (2) there results

(6)
dΣ
dt

= −dΣ + C−1(b,Φ (β/||β||∞ − 1)p).

Hence dΣ
dt ≤ −dΣ holds for t > 0, from where the result follows. �

The proof of the following simple result is omitted for brevity.

Proposition 2. Suppose that b(t) → 0 as t → ∞ along a non-negative solution of
(2), then p(t)→ 0 and S(t)→ S0 as t→∞.

We deduce that no organism can persist in the chemostat if the dilution rate is too
large.

Proposition 3. Suppose that d > ρ(M · diag(B)) where B is the vector of maximal
growth rates defined in assumption B3. Then, for a given non-negative initial datum
in (2), there results b(t) → 0 as t → ∞. As a result, p(t) → 0 and S(t) → S0 as
t→∞.

Proof. Define the positive quantity

ρ̄ := max
S≥0

ρ(M · diagB(S)) = ρ(M · diag(B))

and compute d
dt(b,v), where v � 0 is a solution of diag(B)MTv = ρ̄v. Then

d

dt
(b,v) = (db/dt,v) = (M · diag(B(S))b− db− (Φp) b,v)

=
(
diag(B(S))MTv − dv, b

)
− ((Φp) b,v)

<
(
diag(B)MTv − dv, b

)
=
(
diag(B)MTv − ρ̄v + (ρ̄− d)v, b

)

= (ρ̄− d) (v, b) .

We deduce that (b(t),v) < e(ρ̄−d)t (b(0),v) so b(t) → 0 as t → ∞ and the result
follows from Proposition 2. �

4.1. Diversity without phage is independent of resource supply. The result
stated in Proposition 4 below describes the diversity supported at equilibrium by (2)
in the absence of phage. If we first note that the phage-free set {(b,p, S) ≥ (0,0, 0) :
p = 0} is invariant for dynamics of (2), this proposition states that the chemostat can,
of course, support a non-zero equilibrium population of bacterial cells at a sufficiently
low dilution rate d. However, the model predicts that changing the supply of abiotic
resource to the chemostat does not change the diversity of bacterial types found at
equilibrium.
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Proposition 4. (We make the dependence of M on ε explicit for clarity.) If the
parameter d is fixed with d < ρ(Mε · diag(B)), then there is an Sc0(ε, d) > 0 such that
for each S0 > Sc0(ε, d),

0 = Mε(B(S)b)− db,(7a)

0 = d(S0 − S)− (U(S), b) ,(7b)

has a unique, positive solution, (b, S). Furthermore, this solution has the following
separable decomposition:

(8) b = λ(S0, ε, d) · n(ε, d) such that (n(ε, d),1) = 1,

and S ≡ Sc0(ε, d) for all S0 > Sc0(ε, d).
Here, the scalar λ is a function λ : R× (0, 1)×R→ [0,∞) and n : (0, 1)×R→ Rn

is independent of S0, so too is the equilibrium value of S. Moreover, λ is defined by

(9) λ(S0, ε, d) =

{
d(S0−Sc

0(ε,d))
(n(ε,d),U(Sc

0(ε,d))) if S0 > Sc0(ε, d),

0 otherwise.

Thus, λ exhibits affine dependence on S0 and extends the non-trivial solution branch
of (7) into a bifurcation point from the trivial solution that occurs at S0 = Sc0(ε, d).

Proof. Let A(S) := Mε · diag(B(S)), a non-negative and irreducible matrix, and let
r(S) := ρ(A(S)) denotes its spectral radius. As the family A(S) is strictly increasing
with respect to S, so too is r(S) and so there is at most one value of S for which
r(S) = d. By assumption, limS→∞ r(S) > d and so there is exactly one value of S for
which r(S) = d, call this Sc0(ε, d) and let n = n(ε, d) be the strictly positive vector
that satisfies

A(Sc0(ε, d))n = dn, (1,n) = 1.

In order to satisfy (7a-b), let S = Sc0(ε, d) and set b = λ · n. It is clear that (7a) is
satisfied for any λ, however (7b) requires

d(S0 − S) = (U(S), b) and so λ =
d(S0 − S)
(U(S),n)

which must be non-negative for b to define a non-negative solution of (7a-b). �

The prediction in Proposition 4 that biomass scales linearly with S0 is borne out in
practise (see [14, Fig. 1] for E.coli limited by glucose) and is used as a test of resource
limitation. Of course, the affine relationship between S0 and biomass cannot hold up to
arbitrarily large concentrations of the limiting resource as, eventually, space itself will
become limiting. The biological and mathematical ramifications of this observation
are well beyond the scope of this article.

From equation (8) in Proposition 4 one immediately obtains the result, one that we
state in Theorem 1 below, that the equilibrium diversity of the phage-free subsystem
obtained from (2) by setting p = 0 does not depend upon the resource supply S0.
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Theorem 1. Let H be any diversity measure and let b = b(S0, ε) represent the vector
of bacterial densities of a non-trivial solution locus of (7) with d fixed, then diversity
is independent of the resource supply:

∂

∂S0
H (b(S0, ε)) = 0.

Proof. This is an immediate consequence of (8) and the fact that diversity measures
are scale-invariant. �

4.2. Equilibrium Structure of a Chemostat with Phage. Let us state the equi-
librium problem of (2) for completeness:

0 = M (B(S)b)− (Φp)b− db,(10a)

0 = Mp

(
β
(
ΦTb

)
p
)
− dp,(10b)

0 = d(S0 − S)− (U(S), b) ,(10c)

where M = I + ε(M − I) and Mp = I + ε(Mp − I) for non-negative and irreducible
mutation operators M and Mp, both with mutation rate ε.

� �� �β − dependent

�b�1

S0
Sc

0(�, d) Sp
0 (�, d,β)

p = 0

p� 0

b = 0

stable
unstable

Figure 6. An illustration of the equilibrium structure of (2): a unique
secondary bifurcation from the phage-free solution branch (p = 0) to
a coevolutionary solution branch (p� 0).

Theorem 2. Suppose that Φ is invertible and 0 < d < ρ(M · diag(B)), then there is
a second critical resource concentration

Sp0(ε, d,β) > Sc0(ε, d),

where the latter is defined in Proposition 4, such that (10a-c) has at least one solution
(b,p, S) satisfying b� 0,p� 0 and 0 < S < S0 for all S0 > Sp0(ε, d,β). The resulting
solution vector (b(S0),p(S0), S(S0)) depends smoothly on S0 and, as S0 ↓ Sp0(ε, d), this
vector converges to one of the phage-free form (b,0, S).
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Moreover, the larger the burst sizes, the smaller the window of resource supply
concentrations for which (10a-c) has an equilibrium with bacteria but without phage
(see Figure 6):

lim
β→∞,β�0

Sp0(ε, d,β) = Sc0(ε, d).

Proof. Although ε and d are fixed, we will omit the explicit dependence of the problem
on these parameters to reduce notational clutter.

Applying Proposition 4, for S0 > Sc0 (= Sc0(ε, d)) there is a solution branch of (10)
parameterised by the variable S0 on which

(b,p, S) = (λ(S0)n,0, Sc0) such that (1,n) = 1,

for some vector n(= n(ε, d)) � 0 that is independent of S0. We now seek a sec-
ondary bifurcation of (10) from this solution branch. For this it will be convenient to
distinguish the following irreducible, linear maps

(11) A(S) :=M · diag(B(S)),

and

(12) B(b) :=Mp · diag(β) · diag
(
ΦTb

)
.

By the implicit function theorem, a bifurcation can occur on the phage-free solution
branch of (10) only if the linearisation of (10) on this branch has a non-trivial null-
space for some S0 > Sc0. Explicitly, we require a solution of

A (Sc0)h− dh+ σ · λ(S0)M
(
B′(Sc0)n

)
− λ(S0) (Φk)n = 0,(13a)

λ(S0)B (n)k − dk = 0,(13b)

− (U (Sc0) ,h)− σ ·
(
d+ λ(S0)

(
U ′(Sc0),n

))
= 0(13c)

for some (h,k, σ) 6= (0,0, 0) where S0 > Sc0. Here U ′(Sc0) and B′(Sc0) denote S-
derivatives of U(S) and B(S) evaluated at S = Sc0.

Since n � 0,β � 0, ΦT is invertible and Mp is irreducible, B (n) has a simple,
positive and S0-independent eigenvalue, ω(ε, d,β), with corresponding strictly-positive
left and right eigenvectors that we shall respectively denote by l and r. Taking the
inner product of (13b) with l yields the following relation at a secondary bifurcation:

(14) λ(S0)ω(ε, d,β) = d.

With the restriction from Proposition 4 that S0 > Sc0, recall the following properties:

λ(Sc0) = 0 and λ(S0) =
d(S0 − Sc0)
(n,U(Sc0))

for S0 > Sc0.

Viewed as an equation for S0, it follows from a simple manipulation that equation
(14) has a unique solution that exists when S0 > Sc0, we label this solution Sp0(ε, d,β)
and from a short computation

Sp0 = Sc0 +
(n,U(Sc0))
ω(ε, d,β)

.
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As β → ∞ with β ≥ β � 0 for some positive vector β, it follows that B(n) grows
without bound and so ω(ε,β)→∞ as β →∞ and therefore Sp0 → Sc0 in this limit.

One can see from (10a) evaluated along the phage-free solution branch of (10) (where
p = 0) that d is a simple eigenvalue of A(Sc0), hence the latter has a corresponding
left eigenvector m� 0. Given that k = ϑr for some real ϑ, one can solve (13) for σ
by taking the inner product of (13a) with m to obtain

(15) σ = ϑ · (m, (Φr)n)
(m,Mε (B′(Sc0)n))

.

Moreover, (13a) can be written

(16) (A (Sc0)− dI)h = Λ(k, σ),

where Λ(k, σ) := λ(S0)((Φk)n− σ · Mε (B′(Sc0)n)) is linear in (k, σ).
Since A (Sc0) − dI has a one-dimensional null-space given by the span of n, (16)

has infinitely many solutions of the form h = ϑ · (hp + sn), where hp is a particular
solution of (16), known to exist by the form of σ, and s is any scalar. However, the
constant s is uniquely determined using (13c).

We deduce that the linearisation of (10) on the phage-free solution branch has a
non-trivial, one-dimensional null-space when S0 = Sp0 , parameterised here by ϑ. As
a result, a secondary bifurcation occurs from this branch at S0 = Sp0 , at which point
(b,p, S) = (λ(Sp0)n,0, Sp0) at which point a non-trivial solution branch bifurcates with
p� 0. This can be deduced from the theorem on bifurcation from a simple eigenvalue.
By standard global extensions of the implicit function theorem, we can extend this
branch to one that is defined for all S0 > Sp0 using the dissipative bound (5) and, from
the irreducibility of the mutation processes M and Mp, it follows that b � 0 and
p� 0 for all S0 > Sp0 along this branch. �

In the remainder we will call the non-trivial solution branch of equilibria whose
existence is proven in Theorem 2 the ‘coevolutionary solution branch’ of (2), the semi-
trivial branch on which p = 0 will be called the ‘phage-free solution branch’; this
bifurcation structure is illustrated in Figure 6.

Lemma 1. Suppose that Φ is a non-negative, invertible matrix satisfying

p > 0 =⇒ Φp� 0.

Then, there is a constant m > 0 independent of both S0 and ε such that

‖b‖1 + ‖p‖1 ≤ m

for any non-negative solution of (10). Consequently, along the coevolutionary solution
branch (b(S0),p(S0), S(S0)) of (10) defined in Theorem 2, there results

lim
S0→∞

S(S0)/S0 = 1.
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Proof. Taking the inner product of (10a) with 1, using MT1 = 1 and the triangle
inequality we find |(Φp, b)| ≤ d |(1, b)|+|(B(S), b)| ≤ d‖1‖∞‖b‖1+‖B(S)‖∞‖b‖1 from
where |(Φp, b/‖b‖1)| ≤ d‖1‖∞+ ‖B(S)‖∞ ≤ d+ ‖B‖∞. So, if we define P := p/‖p‖1
and B := b/‖b‖1 then

|(ΦP,B)| ≤
(
d+ ‖B‖∞

)
/‖p‖1.

If there is a sequence of solutions of (10) along which ‖p‖1 → ∞ then we can find
non-negative, unit-norm vectors P > 0 and B > 0 such that |(ΦP,B)| = 0. But
as ΦP � 0, it must follow that B = 0, a contradiction which ensures that ‖p‖1 is
uniformly bounded along solutions of (10).

Similarly, taking the inner product of (10b) with 1 and using MT
p 1 = 1 we obtain

0 = (1,Mp

(
β
(
ΦTb

)
p
)
− dp) = (1,β

(
ΦTb

)
p)− d(1,p)

so d(1,p) = (Φ(βp), b), therefore d = (Φ(βP ), b) and then

d/‖b‖1 = (Φ(βP ), B).

Thus, if ‖b‖1 → ∞ along a sequence of solutions of (10) then there exist non-
negative unit vectors P and B such that (Φ(βP ), B) = 0. But, by assumption Φ(βP )
is a strictly positive vector, a contradiction, and the existence of a uniform bound on
both b and p now follows.

Finally, because d(S0 − S) = (U(S), b) holds at steady-state and b(S0) has been
shown to be uniformly bounded with respect to S0 and U(S) is bounded a priori, it
follows that

d(1− S/S0) = (U(S(S0)), b(S0)) /S0 → 0

as S0 →∞. Hence S(S0)/S0 → 1 along the coevolutionary solution branch as claimed.
�

Lemma 1 states that the phage-free branch of (10) behaves differently from the
coevolutionary branch: the former diverges in density as S0 → ∞ and with constant
diversity, however the latter is uniformly bounded in both phage and bacterial den-
sities as the resource supply increases. This embodies the idea that when resource
supply is high, the bacteria are limited by phage rather than by the resource. Thus,
in chemostats run at high resource concentrations with phage, most of the abiotic
resource passes through the chemostat without being metabolised.

4.3. Global convergence to equilibirum. Throughout the paper we have, and will
continue to tacitly assume the following: positive solution trajectories of (2) converge
to the phage-free equilibrium if S0 ∈ (Sc0, S

p
0) and to the coevolutionary equilibrium if

S0 > Sp0 . This assumption can be verified for some important but, unfortunately, not
exhaustive classes of the model. While extensive numerical simulation has not led to
any reason to believe such a global stability assumption fails, we acknowledge that it
yet may.
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It remains an important caveat of the results in this paper that equilibrium diversity
can be used to describe the long-term diversity of solutions of (2) and in relation to this
remark, we note that certain global convergence results are available, as illustrated by
the following.

Suppose that M = I + (M − I)E is an irreducible mutation process with di-
agonal mutation rate matrix E , that µ0 > 0,K0 > 0,µ = (µ1, ..., µn) ∈ Rn and
K = (K1, ...,Kn) ∈ Rn are all positive but otherwise arbitrary. Now define a growth
yield parameter C > 0. Using these parameters, define Michaelis-Menten growth
functions

Bi(S, ϑ) :=
S(µ0 + ϑµi)

S + (K0 + ϑKi)
, i = 1, 2, ..., n,

and set their associated uptake rates to be Ui(S, ϑ) := C−1 · Bi(S, ϑ). A vector of
Michaelis-Menten growth function

Bϑ(S) := (B1(S, ϑ), B2(S, ϑ), ..., Bn(S, ϑ))

can now be defined that satisfies assumptions (B1-B3) for fixed ϑ > 0, now set
Uϑ(S) := C−1Bϑ(S).

Finally, fix a single burst rate β > 0 and create a vector of adsorption rates φϑ :=
1 +ϑ ·φ′ of each of the n bacterial types to just one phage type, where φ′ is any n× 1
vector.

Theorem 3. Consider the following bacteria-phage model:
db

dt
= M(Bϑ(S)b)− db− p · diag(φϑ)b, ∈ Rn(17a)

dp

dt
= β(φTϑb)p− dp, ∈ R1(17b)

dS

dt
= d(S0 − S)− (Uϑ(S), b) .(17c)

Suppose that S0 > 0 and d > 0 are fixed and that and all equilibria of (17) are
hyperbolic when ϑ = 0. Then there is a δ > 0 such that for 0 ≤ ϑ < δ, all non-
negative solution trajectories of (17) are attracted to an equilibrium as t→∞.

Proof. First note that

U0(S) =
1
C
· µ0S

K0 + S
· 1, B0(S) =

µ0S

K0 + S
· 1 and diag(φ0) = I

when ϑ = 0.
Exploiting the dissipitivity of (17) proven in Proposition 1, we deduce that along

any non-negative solution of (17), (b(t), p(t), S(t)), there is a t′ > 0 such that

(18) (1, b(t)) + p(t)/β + C · S(t) ≤ C · (S0 + 1)

for all t > t′.
We first prove that the dynamics of (17) are attracted to a long-term equilibrium

when ϑ = 0, as follows. Using the irreducibility of M, the decomposition

b(t) = α(t)(ν + v(t)) ∈ 〈ν〉 ⊕ 〈1〉⊥ , α(t) ∈ R,
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is well-defined, where Mν = ν, (1,v(t)) ≡ 0 and (1,ν) = 1.
As ḃ(t) = α̇(t)(ν + v(t)) + α(t)v̇(t), the fact that ϑ = 0 leads to a good deal of

simplification in a calculation that eventually yields, in place of (17a), the following
pair of differential equations:

v̇ =
µ0S

K + S
(M− I)v, α̇ = α

(
µ0S

K + S
− d− p

)
, v ∈ 〈1〉⊥ .

From here we calculate
d

dt
(v,v) = 2(v̇,v) = 2

µ0S

K + S
((M− I)v,v).

From the assumption stated in (1) that M − I is strictly negative definite when
restricted to its invariant space 〈1〉⊥, we deduce that

d

dt
(v,v) ≤ 2µ0

(
sup

v∈〈1〉⊥,‖v‖2=1

((M− I)v,v)

)
· (v,v) = −2µ0ρ0 · (v,v).

Integrating this inequality yields ‖v(t)‖2 ≤ e−ρ0µ0t‖v(0)‖2 where ρ0 > 0 and µ0 > 0.
As v(t) therefore converges exponentially to zero, (17) has an exponentially attracting
invariant set on which v = 0 when ϑ = 0 and so (17) then reduces to the three-
dimensional system

dα

dt
= α

(
µ0S

K + S
− d− p

)
,(19a)

dp

dt
= βαp− dp,(19b)

dS

dt
= d(S0 − S)− α (U0(S),ν) .(19c)

If we define Σ = S0 − S − C−1(α + β−1p), then Σ̇ = −dΣ along solutions of (19)
and so (19) is dissipative, as it must be. But then the set on which Σ = 0 defines an
exponentially-attracting invariant manifold of (19) on which C · S + α+ p/β = C · S0

so that one may write S = S(α, p) := S0 − (α+ p/β)/C on this invariant set.
If we now define A = ln(α) and P = ln(p) then (19) has periodic solutions for

non-negative initial data if and only if the planar system

dA

dt
=

µ0S(eA, eP )
K + S(eA, eP )

− d− eP ,(20a)

dP

dt
= βeA − d,(20b)

also supports an appropriate period solution. The divergence of the vector field that
defines (20) is sign-definite and so this differential equation has no periodic orbits,
but then neither does (19). As (19) is dissipative with an attracting, invariant two-
dimensional affine graph and it defines a dynamical system on this graph with no
periodic orbits, we conclude that the long-term behaviour of trajectories of (19) is to
converge to a steady-state by the Poincaré-Bendixson theorem.

As (19) only has three possible equilibria, where α = p = 0, one where p = 0 but
α > 0 and one where both α > 0, p > 0, exactly which equilibria exist depends upon
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the system parameters. However, provided those parameters are chosen in such a way
that all of the equilibria are hyperbolic, because only one of them can be locally stable
for any set of parameter values, the one that is both hyperbolic and locally stable is
also globally stable for (17) for a generic choice of non-negative initial data.

Now applying [31, Corollary 2.3], one can readily prove that this global stability
property persists to small, positive values of the parameter ϑ. �

Theorem 3 is but one of a family of similar results and this particular result describes
a situation in which there is just one phage type. There are straightforward extensions
in a number of directions, including ones to systems with multiple phage types.

5. Resource-Mediated Diversity: an exactly solvable model

We now in a position to return the original question of what patterns of diversity,
such as that shown in Figure 5, are generated by (10) when one fixes all other pa-
rameters but varies the resource concentration supplied to the chemostat. Figure 5
shows that bacterial diversity is constant for high values of S0 and that phage diver-
sity is maximal at ‘intermediate’ values of S0; but is this the only pattern of diversity
predicted by (2)?

We assume the following throughout this section: Φ will be a non-singular matrix
with

(21) Φ−1(B − d1)� 0 and Φ−T (1/β)� 0.

For technical reasons, it is also important to note that there exists a B̂ ∈ Rn such
that

lim
S→∞

S2 · dB
dS

(S) = B̂.

One limitation regarding the applicability of condition (21) is the assumption that
Φ−1 maps certain positive vectors to positive vectors. This will occur quite generally
if Φ−1 is a non-negative matrix, but this is too strong an assumption to use in general
as it places severe restrictions on the form Φ can take.

However, the conditions in (21) are indeed relevant to adsorption matrices found
in the literature. For example, if we define a gene-for-gene interaction between four
genetically distinct bacterial and phage types with burst sizes β and if

Φ = θ ·




a b c d

0 e 0 g

0 0 h k

0 0 0 1




and β = ‖β‖∞ ·




1/u

1/v

1/w

1



,
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(21) would then require positivity of the vector

Φ−1(1/β) =
‖β‖∞
θ




u
a − bv

ea − cw
ha + bgh+cke−deh

aeh

(v − g)/e

(w − k)/h

1



.

This condition clearly depends on the parameters contained within Φ and β, however,
there are many parameter values for which (21) is met.

Our aim now is to establish the following result regarding the diversity of phage
supported by (10) when measured using Simpson’s index, Hs.

Theorem 4. Suppose that d is fixed with 0 < d < ρ(M· diag(B)) and ε > 0 is fixed.
Then, there is an Sv0 > 0 and a function v : (Sv0 ,∞)→ Rn such that the coevolutionary
solution branch (b(S0, ε),p(S0, ε), S(S0, ε)) of (10) satisfies

‖p(S0, ε)− v(S0)‖ = O(ε)

as ε↘ 0 uniformly for S0 > Sv0 . Moreover, one of only two possibilities occurs, either

(i). d
dS0

Hs(v(S0)) 6= 0 for all S0 > Sv0 or
(ii). there is a unique S0 > Sv0 such that d

dS0
Hs(v(S0)) = 0.

Within the same range of values of S0, equilibrium bacterial diversity Hs(b(S0, ε)) is
O(ε)-close to a constant function.

Theorem 4 states that the restrictions on the model (10) assumed in this paper
permit two outcomes: the equilibrium diversity of phage is O(ε)-close to a function
that is either unimodal or monotonic in resource supply and the equilibrium diversity
of bacteria is O(ε)-close to a constant. In short, diversity of neither phage nor bacteria
can oscillate as S0 grows.

We shall prove Theorem 4 with a series of lemmas that now follow.

Lemma 2. Consider the ecological equilibrium equations obtained by setting ε = 0 in
(10), namely

0 = B(S)b− (Φp)b− db,(22a)

0 = β
(
ΦTb

)
p− dp,(22b)

0 = d(S0 − S)− (U(S), b) .(22c)

There is an interval (Sv0 ,∞) ⊂ R and a smooth function S : (Sv0 ,∞) → Rn+n+1 that
parameterises a unique, strictly positive solution branch of (22) as a function of S0.
Moreover, on this branch there results

b(S0) ≡ dΦ−T (1/β) and p(S0) = Φ−1(B(S(S0))− d1)

where the function S(S0) satisfies

S(S0) = S0 −
(
Vmax,Φ−T (1/β)

)
+O(S−1

0 )
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as S0 →∞.

Proof. From the conditions in (21), equation (22) has the following analytic solution:

b ≡ dΦ−T (1/β) and p = Φ−1(B(S)− d1)

where d(S0 − S) = (U(S), b) and so

(23) S0 = S + Λ(S)(Vmax,Φ−T (1/β)) = S +
S

K + S
(Vmax,Φ−T (1/β)).

Equation (23) can be written as a quadratic in S that may be solved for S as a function
of S0, thus completing the proof. �

In order to incorporate mutations into Lemma 2 but at a low rate, we turn to the
coevolutionary steady state equation (10).

Lemma 3. There is a set Ω := (Sv0 ,∞)× [0, ε) and a unique function (b,p, S) : Ω→
Rn+n+1 that parameterises the family of unique positive solutions of (10) such that

(24) b(S0, ε) = dΦ−T (1/β) + εEb(ε, S−1
0 ), p(S0, ε) = Φ−1(B(S)− d1) + εEp(ε, S−1

0 ),

where
S(S0, ε) = S0 −

(
Vmax,Φ−T (1/β)

)
+O(S−1

0 ) + εEs(ε, S−1
0 )

and Eb, Ep, Es are smooth functions of their arguments.

Proof. Put δ := 1/S, σ := S0/S and define B̃(δ) := B(S) in (10), giving the relation

(25a) 0 =Mε(B̃(δ)b)− (Φp)b− db

that replaces (10a). Now desingularise B̃(δ) at δ = 0 by defining B̃(0) := limS→∞B(S) =
B � 0 and

d

dδ
B̃(δ)

∣∣∣∣
δ=0

:= lim
S→∞

−B′(S)S2 = −B̂.

Note that (10c) can be written in terms of δ as

(25b) 0 = d(σ − 1)− δ
(
Ũ(δ), b

)
,

after defining and then desingularising the vector of uptake rates Ũ(δ) := U(S).
To solve the new system of desingularised equations (25a,25b,10b), let the right-

hand side of this set of three equations be denoted by the smooth, nonlinear mapping
F(b,p, σ, δ, ε), noting that

(b0,p0, σ0, δ0, ε0) :=
(
dΦ−T (1/β),Φ−1(B − d1), 1, 0, 0

)

is a solution of F(b,p, σ, δ, ε) = 0. The derivative db,p,σF(b,p, σ, δ, ε) is given by the
mapping

L (b,p, σ, δ, ε) [h,k, s] :=
[
M(B̃(δ))h− (Φp)h− dh− (Φk)b,

Mp(β
(
ΦTh

)
p+ β

(
ΦTb

)
k)− dk, −δ

(
h, Ũ(δ)

)
+ ds

]
.(26)

As a result, if L (b0,p0, σ0, δ0, ε0) [h,k, s] = (0,0, 0) then s = 0 follows because
δ0 = 0 and d > 0, but then β

(
ΦTh

)
p0 = 0 because of the form of b0, whence h = 0
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because p0 � 0. From here (Φk)b0 = 0 and so we deduce that k = 0 because b0 � 0.
Hence we can smoothly solve the nonlinear equation F(b,p, σ, δ, ε) = 0 for (b,p, σ)
as a function of (δ, ε) in a neighbourhood of (δ, ε) = (0, 0) using the implicit function
theorem and this neighbourhood can be used to define Ω.

The Taylor expansions in the statement of the lemma can be established by observ-
ing that, when setting ε = 0 in (10), the form of the resulting solution is then given by
Lemma 2 and the inclusion of mutations induces an O(ε) correction to that form. �

Remark 2. In the remainder we will use the notation

(27) w(S) := Φ−1(B(S)− d1),

so that the function v(S0) given in Theorem 4 may also be written as w(S(S0)) where
S(S0) is the value of the resource concentration at steady-state determined from solu-
tions of (22) in Lemma 2. For completeness we note that this function is given by a
solution, S, of the quadratic equation

S2 + S
((
Vmax,Φ−T (1/β)

)
− S0 +K

)
−KS0 = 0.

The following lemma states that the resource availability S in the environment as
measured using solutions of (22) increases with the resource supply parameter S0,
provided the latter is sufficiently large.

Lemma 4. For the smoothly-parameterised equilibrium solution branch of (22) defined
in Lemma 2, there results dS/dS0 > 0 for S0 > Sv0 .

Proof. Differentiating (22c) with respect to S0 we obtain

d

(
1− dS

dS0

)
=
(
U ′(S), b

) dS
dS0

where a prime (′) denotes a derivative with respect to S, the result now follows. �

Let us turn to the computation of the S0-derivative of phage diversity, d
dS0

Hs(v(S0))
which equals d

dS0
Hs(w(S(S0))) and for this purpose we define

q(S) := w(S)/(1,w(S)).

Now recall that Hs(v) = 1− (v,v)/(1,v)2 so that Hs(q(S)) = 1− (q(S), q(S)).
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If we set w′(S) := dw
dS (S), which equals Φ−1(B′(S)) where B′(S) := dB

dS (S), then
Hs(w(S)) = Hs(q(S)) and so

d

dS0
Hs(v(S0)) =

d

dS0
Hs(w(S(S0))),

=
d

dS0
Hs(q(S(S0))),

= − d

dS0
(q(S(S0)), q(S(S0))) ,

= −2
(
dq

dS
(S(S0)), q(S(S0))

)
· dS
dS0

,

= −2(1,w(S))−3
(
(w,w′)(1,w)− (w,w)(1,w′)

)
· dS
dS0

.(28)

Thus, d
dS0

Hs(v(S0)) = 0 only when

(29) (w(S),w′(S))(1,w(S)) = (w(S),w(S))(1,w′(S)), where S = S(S0).

Recall the notation used here: U(S) = Λ(S) · Vmax and B(S) = Λ(S) · µmax. The
following result completes the proof of Theorem 4.

Lemma 5. There is at most one value of S0 at which equation (29) can be satisfied.

Proof. Equation (29) simplifies somewhat when we note that w(S) = Λ(S)c + d for
two fixed vectors

c := Φ−1(µmax) and d := −dΦ−1(1).

Thus (29) can be written in terms of Λ(S), namely

(30) Λ′(S) [(Λ(S)c+ d, c)(1,Λ(S)c+ d)− (Λ(S)c+ d,Λ(S)c+ d)(1, c)] = 0,

where Λ′(S) > 0 for all S. From (30) we obtain the value of S at which diversity is
extremal and a straightforward manipulation gives the relation

(31) Λ(S) =
(d,d)(1, c)− (1,d)(d, c)
(c, c)(1,d)− (c,d)(1, c)

.

As Λ(S) depends monotonically on S and S depends monotonically on S0 for S0 > Sv0 ,
there is at most one value of S0 at which equation (31) can be satisfied and the result
follows. �

We are now in a position to ask whether different patterns of diversity may be
generated by (10) as S0 changes. The first statement in this direction is the following
result which shows that if the adsorption matrix has a structure whereby the total
adsorption rate of each phage type to each bacterial type is the same, then phage
diversity must eventually increase as S0 increases.
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Proposition 5. Suppose that Φ(1) = α1 where α is an algebraically simple eigenvalue
of Φ. If Vmax 6∈ 〈1〉, then only case (i) of Theorem 4 can occur and phage diversity
increases with resource concentration in the sense that

d

dS0
Hs(v(S0)) > 0

for S0 > Sv0 .

Proof. If we again define c := Φ−1(µmax) and d := −dΦ−1(1), then µmax = C · Vmax

and because Vmax 6∈ 〈1〉, µmax 6∈ 〈1〉 is also true. The assumptions on Φ then ensure
that c 6∈ 〈1〉 and so |(c,1)| < ‖1‖2‖c‖2 holds strictly from the Cauchy-Schwartz
inequality.

Recall that w(S) = Λ(S)c + d, so w′(S) = Λ′(S)c which is positive for S > 0.
Seeking an extreme diversity environment, namely a value of S for which (31) holds,
we find, because Φ(1) = α1 that d = −dΦ−1(1) = −(d/α)1. Hence

Λ(S) =
(−dα−11,−dα−11)(1, c)− (1,−dα−11)(−dα−11, c)

(c, c)(1,−dα−11)− (c,−dα−11)(1, c)

= 0/(−dα−1(c, c)(1,1) + dα−1(c,1)(1, c)) = 0

which is well-defined as (c, c)(1,1) 6= (c,1)2. However, Λ(S) does not equal zero
unless S = 0 and so the extreme diversity equation (29) cannot be satisfied for S > 0.

From (28), recalling q(S) = w(S)/(1,w(S)) and w(S) = Λ(S)c+ d, we have

d

dS0
Hs(q(S(S0))) = −2(1,w(S))−3

(
(w,w′)(1,w)− (w,w)(1,w′)

)
· dS
dS0

evaluated at S = S0, and, from Lemma 4,

sign
(

d

dS0
Hs(q(S(S0)))

)
= −sign

(
(w,w′)(1,w)− (w,w)(1,w′)

)
.

A straightforward calculation now shows that

(w,w′)(1,w)− (w,w)(1,w′) = dΛ(S)Λ′(S) · ((c,1)2 − (c, c)(1,1))

which is negative from the Cauchy-Schwartz inequality and the result follows. �

6. When Diversity Increases with Resource Availability

The experimental data and associated mathematical model whose results we sum-
marised in Figure 4 show that bacterial and phage diversity may decrease as sugar
supply to the microcosm increases. However, the analysis of the previous section
shows that there is at least one other possible outcome even in a model as simple as
the one stated in equation (2).

Proposition 5 provides a condition under which the equilibrium diversity of phage
obtained using (10) will be O(ε)-close to a monotonic increasing function for large
enough S0. This uniform adsorption condition which states that

(32) Φ(1) = α1,

although restrictive, has several biological interpretations.
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For example, it expresses the idea of an adsorption trade-off in the sense that
bacteria that are susceptible to a lower number of phage types have higher probabilities
of infection by each of those phage types. Equivalently, phage types with wider host
ranges have lower probabilities of adsorption to each single bacterial type. So, for
example, Proposition 5 may apply if

Φ = θ ·
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,

which incorporates the trade-off property that phage with wider host ranges have
lower per-host adsorption rates.

Another interpretation comes from the idea of a perfect lock and key or a perfectly
matching alleles mechanism between phage and their bacterial hosts. This is where
Φ is proportional to an identity matrix, Φ = θI, for some θ > 0, meaning that each
phage type has a single bacterial host type to which it adsorbs, but no other.

Example 1. If the adsorption mechanism in (10) is the matching-alleles structure
whereby Φ = θI then Proposition 5 may be applied. We deduce that phage diversity at
equilibrium, modulo an O(ε) correction, will eventually increase with resource supply.
Figure 7 contains a numerically-computed illustration of this adsorption model where
the positive correlation between S0 and phage diversity is evident (see Figure 7(b) in
particular).
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Figure 7. Equilibrium densities (see (a)) and diversity (see (b))
of bacteria and phage, also shown is the fraction of unmetabolised
resource (S0 − S)/S0 as a function of resource supply; this uses the
same parameters as Figure 5 except that Φ = 2× 10−8 · I4×4.

The previous example serves to show that one can construct gene-for-gene systems
in which the diversity of phage increases with resource supply. The following example
illustrates that the gene-for-gene and matching alleles mechanisms cannot therefore
be distinguished only on the basis of the diversity patterns they generate.
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Example 2. The space of all gene-for-gene interactions at two genetic loci that also
satisfy the uniform adsorption assumption (32) are contained within the following
six-parameter family of adsorption matrices:

ΦuaGFG = θ




a b c 1 - (a+b+c)
0 d 0 1 - d

0 0 e 1 - e

0 0 0 1



,

where 0 < a, b, c, d, e < 1 are independent parameters and θ > 0 is a normalisation
constant. Proposition 5 applies to the family of matrices defined within ΦuaGFG and
we deduce that, modulo an O(ε) correction, phage diversity will increase monotonically
with respect to changes in S0, when the latter is sufficiently large. This can be seen in
the illustrative computation of Figure 8(b) wherein a = b = c = 1

4 and d = e = 1
2 .
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Figure 8. Equilibrium densities (see (a)) and diversity (see (b)) of
bacteria and phage types, also shown is the fraction of unmetabolised
resource (S0 − S)/S0 as a function of resource supply; this uses the
same parameters as Figure 5 except that Φ is given in Example 2 with
θ = 10−8.

7. Conclusion

We have shown that equation (2) can support at least two distinct long-term diver-
sity patterns: phage diversity can exhibit a multi-modal or a monotonic dependence
on the rate at which energy is supplied to the evolving microcosm, depending on the
details of the bacteria-phage infection mechanism.

The model system of E.coli-T3 coevolution that we studied empirically lies in the
former class. It is not known if the latter class can be realised with an empirical model
but the matching allele mechanism has been postulated by others [37] to arise when
E.coli co-evolves with the coliphage λ. A study of this model system lies beyond the
scope of the present article, but this will be the subject of a future study with the aim
of providing an appropriate experimental context in which to interpret Figure 7.
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