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Abstract. Using optimal control theory as the basic theoretical tool, we investigate the
efficacy of different antibiotic treatment protocols in the most exacting of circumstances,
described as follows. Viewing a continuous culture device as a proxy for a much more
complex host organism, we first inoculate the device with a single bacterial species and
deem this the ‘commensal’ bacterium of our host. We then force the commensal to compete
for a single carbon source with a rapidly evolving and fitter ‘pathogenic bacterium’, the
latter so-named because we wish to use a bacteriostatic antibiotic to drive the pathogen
towards low population densities.

Constructing a mathematical model to mimic the biology, we do so in such a way that
the commensal would be eventually excluded by the pathogen if no antibiotic treatment
were given to the host or if the antibiotic were over-deployed. Indeed, in our model, all
fixed-dose antibiotic treatment regimens will lead to the eventual loss of the commensal
from the host proxy.

Despite the obvious gravity of the situation for the commensal bacterium, we show by
example that it is possible to design drug deployment protocols that support the commen-
sal and reduce the pathogen load. This may be achieved by appropriately fluctuating the
concentration of drug in the environment, a result that is to be anticipated from the theory
optimal control where bang-bang solutions may be interpreted as intermittent periods of
either maximal and minimal drug deployment.

While such ‘antibiotic pulsing’ is near-optimal for a wide range of treatment objectives,
we also use this model to evaluate the efficacy of different antibiotic usage strategies to
show that dynamically changing antimicrobial therapies may be effective in clearing a
bacterial infection even when every ‘static monotherapy’ fails.

1. Introduction

Almost since the very discovery of antibiotics, a conventional wisdom has established
which states that bacterial infections should be treated aggressively [11]. This principle was
given as a maxim by Alexander Fleming himself: ‘if you use penicillin, use enough’ [13].
Such a hit early and hard paradigm has impinged upon our understanding of antimicrobial
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treatment to the point that, today, it has become the convention to advocate that shortening
the duration of a treatment can promote the evolution of drug resistance in pathogens [3].

The reasoning goes that a very high drug dose in excess of the mutant-prevention concen-
tration reduces treatment duration and so permits less time and fewer bacteria from which
resistant genotypes may emerge. However, one might equally argue that higher doses of
antibiotic impose stronger selective pressures in favour of drug-resistant bacteria [39]. As
a result, multi-drug combination therapies are now commonly used to both preserve drug
efficacy and to supposedly retard the evolution of resistance [22, 40, 35].

Despite an ongoing tendency for increasing the complexity of antibacterial treatments,
itself at least partially resulting from a lack of novel antibiotics [5], we contend that there
remains a lack in our understanding of how to deploy just one antibiotic into a single host in
order to select best against drug resistant pathogens. Indeed, the issue of how competition
for resources of a pathogen with a commensal bacterium mediates the optimal treatment
is one that, to our knowledge, is yet to be addressed in the theoretical literature.

It is increasingly clear that broad-spectrum antibiotics may be associated with harmful
side effects [8] and can disrupt an innate protective mechanism known as colonisation
resistance. By shifting the balance between the commensal microbiota and enteropathogenic
bacteria in favour of the pathogens, antibiotics may even be responsible for increasing the
likelihood of infection [31, 32, 9]. This highlights the importance of considering not only the
evolutionary dynamics at play during treatment but, in time, it may become essential to
account for the ecological shift within a single host that takes place after the administration
of a drug to a patient.

The purpose of this paper is to deploy techniques of mathematical analysis on a theoret-
ical model calibrated against an experimental dataset to address the following questions:
how do we deploy a single, bacteriostatic antibiotic into a host in order to optimally dis-
place the pathogen and suppress its antibiotic resistant mutants? What practicable drug
deployment protocols can be used to support a commensal bacterium in its struggle with
a fitter pathogen, and so use an antibiotic to promote colonisation resistance?

2. A possible control-theoretic formulation

The task of constructing a biologically-realistic mathematical model describing the pop-
ulation and evolutionary dynamics of a pathogen in a host organism is both difficult and
ongoing. Later in this paper we will propose a very simple model of a microbial micro-
cosm, one that is calibrated against known experimental data, that will allow us to design
and evaluate the efficacy of different antibiotic usage strategies. But first, in a search for
general results, we will stay within a core modelling framework that comprises a large class
of genetical models of bacteria growing under both resource limitation and the inhibitory
effect of a bacteriostatic antimicrobial agent.
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2.1. A class of abstract population genetics models. Bioreactors have been used for
decades to model the complex ecological interactions between hosts and pathogens in a
controlled environment. In particular, continuous culture devices like chemostats permit
the growth of bacteria in near-constant resource conditions, maintaining bacterial growth
rate at a steady-state. Thus, for our proxy of a single host organism we adapt the standard
chemostat whereby a second supply vessel is attached to the chemostat to dynamically
control the input of antibiotics into the microcosm while maintaining the overall resource
input concentration at a constant value, as illustrated in Figure 1.
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Figure 1. Diagram of a chemostat with dilution rate d and nutrient input
S0 adapted to supply antibiotic A0 at a rate δ and to maintain the volume
and resource input rate constant.

Let us now suppose that this device contains n different commensal bacterial phenotypes
competing for the limited resource with m different types of rapidly-evolving pathogens.
Let us use vectors C ∈ Rn and P ∈ Rm to represent the densities of each genotype of
the commensals and pathogens, respectively. If we denote the concentration of a single,
limiting carbon source by S and use A for the concentration of a bacteriostatic antibiotic
present in the growth medium, then we can represent the state of the host using the variable
x(t) := (S(t), C(t), P (t), A(t)), where t ≥ 0 is time.

We shall concentrate on the following model in the remainder of the paper:

d

dt
S = d(S0 − S)− 〈Uc(S), C〉 − 〈Up(S), P 〉 ,(1a)

d

dt
C = Gc(S,A) · C − dC,(1b)

d

dt
P = Mε (Gp(S,A) · P )− dP,(1c)

d

dt
A = δ(t)A0 − dA−A (〈ac, C〉+ 〈ap, P 〉) ,(1d)

where non-negative initial conditions

x(0) = (S (0),C (0),P(0),A(0)) ≥ (0,0,0, 0)

are given with S(0) ≤ S0 and A(0) ≤ A0, while vectors ac and ap represent mass-action
binding rates of different phenotypes of commensal and pathogen bacteria to the antibiotic
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molecule. The angled brackets denote standard inner products and A0 is the concentration
of that antibiotic held in a second supply vessel, as illustrated in Figure 1.

The initial vector P(0) will represent an isogenic bacterial population, meaning that P(0)
will reside in the span of vectors of the form (1, 0, ..., 0). The parameter S0 is the supply
concentration of abiotic resource and d the washout rate of the chemostat. The control
variable, δ(t), must be bounded by the dilution rate d and therefore for the remainder of
this paper we will assume δ is a bounded, measurable function with 0 ≤ δ(t) ≤ d almost
everywhere.

The functions Uc(S) and Up(S) denote the uptake rates of the limiting resource by
commensal and pathogenic bacteria, respectively and are positive, monotone increasing
functions with linear upper bounds. The growth rates Gc(S,A) and Gp(S,A) are vectors
which must satisfy the defining property that growth rates are reduced when antibiotic is
introduced:

(2) Gc(S,A) < Gc(S, 0) and Gp(S,A) < Gp(S, 0).

The non-negative, irreducible matrix Mε represents a mutation processes, namely the
de novo changes in drug-resistance profiles of bacteria that arise due to DNA replication
errors. This matrix will be decomposed into the form

Mε = I + ε(M − I),

where the rate of mutations is the same for all phenotypes and equals ε ∈ (0, 1). Here M
is an irreducible stochastic matrix with zeros on its main diagonal, whence MT1 = 1 and
so MT

ε 1 = 1 for all ε > 0 too. It is important to note in this model that we only allow
resistance to be acquired through point mutations occurring during cell division and are not
considering other acquisition mechanisms, horizontal gene transfer [6] or gene duplication
and amplification [28] for example.

Our goal is to find antibiotic deployment strategies that select against the pathogen
while supporting the commensal population. To achieve this we propose that the following
saddle-point objective functional is a useful theoretical device:

(3) J (δ) :=
∫ T

0
〈1, C〉 − 〈1, P 〉 dt,

where J : L∞(0, T )→ R is a well-defined functional. This functional can be written in the
form J (δ) =

∫ T
0 (w,x(t))dt, where w is the following sign-indefinite weight vector

w = (0, 1, 1, ..., 1,−1,−1, ...,−1, 0) ∈ R1+n+m+1.

We can now state our control problem: determine a function δ∗ that maximises J (δ) in
(3) subject to the constraint (1a-d).
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Remark 1. The dynamics of equation (1a-d) can be non-trivial even when δ is a constant
function. For example, when ε = 0, A(0) = 0 and A0 = 0, a situation that represents an
absence of mutations and with no antibiotic agent present in the environment, (1) obeys
a competitive exclusion principle in the sense that only one type of either commensal or
pathogenic bacteria can persist in the device. It is known that competitive exclusion is not
necessarily expected in the presence of a growth inhibitor due to the possible existence of
cycles in population densities [30]. However, the article [37] demonstrates that a chemo-
stat model with a form of inhibition similar to the one used in (1) may indeed obey the
competitive exclusion principle.

Definition 1. To ensure the abstract model (1a-d) possesses the full gravity of the situ-
ation facing current and future users of antibiotics, we quite purposefully impose a set of
restrictions on the physiological and evolutionary responses of the commensal and pathogen
populations to the antibiotic. In particular, we will impose the restriction that there are no
environmental conditions under which the commensal has the highest growth rate. Thus, if

Gc(S,A) = (G1
c , G

2
c , ..., G

n
c ) and Gp(S,A) = (G1

p, G
2
p, ..., G

m
p )

then for each S ≥ 0, A ∈ [0, A0] there results

max
1≤j≤n

Gjc(S,A) < max
1≤j≤m

Gjp(S,A).

In this case we say that the pathogen has complete competitive advantage over the com-
mensal.

In the remainder of the paper we will show, aided by the J -optimal contols, that the com-
mensal can be held at greater densities than the pathogen despite the latter having complete
competitive advantage.

2.2. Control existence: near-optimality of antibiotic pulsing. The dynamical equa-
tions (1a-d) may be represented, in complete generality, by a smooth nonlinear mapping,
F , whereby

(4)
d

dt
x = F(x) + δ(t) ·A0e, x(0) ∈ R1+n+m+1.

Here, δ(t) represents our bounded and measurable control variable to be determined, A0

denotes the supply concentration of antibiotic to the host and e = (0, 0, ..., 0, 1) ∈ R1+n+m+1

is a fixed vector.

Let us define the set of admissible controls, this is the set of measurable functions taking
values almost everywhere between 0 and d,

Ω := {δ ∈ L∞[0, T ] : 0 ≤ δ(t) ≤ d for almost all t ∈ [0, T ]}.

Theorem 1. We say that F is control dissipative if there is a constant M > 0 such that for
all δ ∈ Ω, if x(δ) ∈W 1,∞(0, T ) is the corresponding solution of (1a-d), then ‖x(δ)‖L∞ ≤M
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and x(t) ≥ 0 for (almost) all t. There is an optimal control δ∗ ∈ Ω such that

J (δ∗) = max
δ∈Ω
J (δ)

if F is control dissipative.

Proof. Suppose that supδ∈Ω J (δ) = limk→∞ J (δk) for (δk)∞k=1 a ‘supremising’ sequence of
admissible controls with associated state responses (xk)∞k=1 ∈W 1,∞(0, T ).

Note that the objective functional J : L∞ → R is continuous with respect to the weak*
topology on L∞ as J is linear with respect to x and (4) is affine with respect to δ. Moreover
Ω is a closed and convex subset of L∞ and therefore Ω is compact with respect to the weak*
topology on L∞. Then, because 0 ≤ δk ≤ d almost everywhere, we can assume without
loss of generality that δk

∗−⇀ δ∗ ∈ Ω as k →∞.

Now, as F is assumed to be control dissipative, (xk) is uniformly bounded in L∞ and
therefore also in W 1,∞ by a simple bootstrap argument. Hence there exists an M ′ > 0
independent of k such that ‖x‖W1,∞ < M ′ and so a further subsequence (xk) can be
found, that we do not relabel for notational convenience, such that xk

∗−⇀ x∗ as k → ∞.
Furthermore,

lim
k→∞

J (δk) = lim
k→∞

∫ T

0
〈w,xk〉 d =

∫ T

0
〈w, lim

k→∞
xk〉dt =

∫ T

0
〈w,x∗〉 dt

= J (δ∗),

so that J (δ∗) = sup{J (δ) : δ ∈ Ω} and therefore δ∗ is the optimal control with state
response x∗. �

Theorem 2. An antibiotic deployment regimen δP (·) ∈ Ω is said to be a pulsing strategy
if δP (t) equals 0 or d for each t ∈ [0, T ]. For each η > 0, there is a pulsing strategy δP (·)
such that J (δP ) > maxδ∈Ω J (δ)− η.

Proof. Let us define a partition of [0, T ] by IN = (ti)Ni=0 where 0 = t0 < t1 < · · · < tN−1 <

tN = T and let PC(IN ) represent the space of piecewise constant functions on IN taking
only the values 0 or d on each subinterval (ti, ti−1]. Then the set of admissible pulsing
protocols is defined as

ΩP = {δp ∈ Ω : ∃N ∈ N, IN such that δp ∈ PC(IN )}.

As ΩP is a weak* dense subset of Ω, see [34], it follows that maxδ∈Ω J (δ) = supδ∈Ωp
J (δ)

and the result follows. �

Corollary 1. Equation (1a-d) has an optimal control with respect to the functional J
defined in (3). Moreover, solutions of (1) are non-negative for any admissible control δ and
both 0 ≤ S(t) ≤ S0 and 0 ≤ A(t) ≤ A0 hold for all t ≥ 0.
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Proof. Defining Σ = S0−S−〈1, C〉−〈1, P 〉, it follows from assumption (2) that d
dtΣ ≥ −dΣ

for all t ≥ 0 and so Σ(t) ≤ e−dtΣ(0), or

S + 〈1, C〉+ 〈1, P 〉 ≤ S0 +O(e−dt).

Moreover, it is straightforward to prove the non-negativity of solutions of (1) for non-
negative initial data, independently of the (admissible) control, and from there it follows
that d

dtA ≤ δ(t)A0− dA. As a result, A(t) ≤ A0 +O(e−dt). These inequalities are sufficient
to deduce that the nonlinear mapping F defined by the right-hand side of (1) is control
dissipative and so the first part follows.

As S(0) ≤ S0 and A(0) ≤ A0 were assumed in the discussion following the presentation
of (1a-d), a straightforward examination of equations (1a) and (1d) shows that the final
claim of the corollary must be true. �

Remark 2. Pulsing deployment strategies are described in the medical literature where they
are also known as intermittent dosage schedules [10, 17, 18].

Some pulsing strategy might not, in fact, be optimal for the following reason. Using
standard control theory we can write down a boundary value problem satisfied by the
optimal control by forming the Hamiltonian

H(x,λ, δ) := 〈λ,F(x) + δA0e〉+ 〈w,x〉 ,

where λ is the adjoint variable and it satisfies the final-value problem

(5) −λ̇ = w +∇F(x)Tλ, λ(T ) = 0.

A standard result states that the Hamiltonian associated with the constrained optimi-
sation problem determined by equations (4-5) is maximised at all times along the optimal
solution (x∗,λ∗, δ∗):

H(x∗,λ∗, δ∗) = max
δ∈Ω
H(x∗,λ∗, δ).

As the Hamiltonian H is affine with respect to the control δ, then the maximum of
H(x∗,λ∗, δ) for 0 ≤ δ ≤ d occurs when δ(t) = d if 〈λ∗(t), e〉 > 0 or else δ(t) = 0 if
〈λ∗(t), e〉 < 0. As a result of this, 〈λ∗(t), e〉 is called the switching function. If 〈λ∗(t), e〉 = 0
holds for t in some interval of non-zero measure then the control is singular ; in this situation,
we may make no claim about the optimality of antibiotic pulsing strategies.

We would like to emphasise at this point that although it can be shown theoretically that
there exist admissible pulsating protocols arbitrarily close to the true J -optimal control,
such a control determined for a specific mathematical model will only be of limited interest
if we are unable to implement that control in practice. Indeed, it must be stated that we
have little expectation that an optimal control computed numerically using optimisation
techniques will turn out even to be a useful concept for real-world experimental or clinical
systems. We would like to make clear that we are not proposing to compute optimal
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pulsating schedules for therapeutic purposes, such a claim would be far beyond the scope
of this paper. There are two rationales for the consideration of pulsating strategies. First,
they provide a baseline that can be used to compare a theoretical optimum with other
strategies that are easier to implement in real-world systems, such as those described in the
following section. Second, if one were somehow able to determine the best possible pulsing
strategy in a real-world system, the arguments of this section indicate that such an object
cannot be too far from the true optimal.

3. Other therapeutically relevant controls

3.1. Optimal single-pulse therapies. The first question one might ask when designing
drug usage strategies is how much antibiotic should be used? Or, if we fixed the drug dosage,
we might then ask what would the optimal treatment duration be? Surprisingly, perhaps,
there is no consensus in the medical and pharmaceutical communities on how to answer
these simple questions.

High doses of antibiotic are believed to be more effective for clearing infections, but
they are also responsible for promoting the evolution of drug resistance, thus decreasing
drug efficacy for future treatments. For instance, long-term treatments, usually preferred
in clinical settings, have been associated with unnecessary side effects [21] and with a
considerable increase in treatment costs [23]. Furthermore, it has also been shown that
patients that receive unnecessarily long treatments may suffer a significantly greater risk of
acquiring nosocomial infections [24].

There is clinical evidence that therapies of shorter duration may have the same clinical
effect as guidelines that recommend longer-term and higher-dose treatments. For example,
a 3-day antibiotic therapy does not lead to inferior clinical results when treating community
acquired pneumonia than a standard 8-day treatment [12, 27]. Similarly, it has been shown
that an 8-day course of antibiotic therapy for ventilator-associated pneumonia was equally
effective as a 15-day course [7]. While our rather mathematically-defined optimal treatment
will almost certainly always remain an elusive concept in practice, computing the optimal
stopping time in theoretical models is a very simple task.

So, let us deploy antibiotics at the maximum rate d during θ units of time, where 0 ≤ θ ≤
T . Then, our single-pulse control redolent of Fleming’s ‘hit early maxim’ may be written
as follows:

δsp(θ)(t) :=

{
d if 0 ≤ t < θ,

0 if T ≥ t ≥ θ.

The optimal stopping time, denoted θ∗, is computed by numerically maximising the objec-
tive functional defined in (3) for each value of θ ∈ [0, T ]. That is, θ∗ satisfies

J (δsp(θ∗)) = max
θ∈[0,T ]

J (δsp(θ)).
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3.2. Tapering dosage strategies. There is clinical evidence that support high-dose, short-
course therapies to treat bacterial infections like pneumonia [29], but it is also known that
early cessation of antibiotic therapy can be associated with increased mortality in critically
ill patients [26]. So, instead of stopping treatment completely, it has been proposed that
treatment could start with a high dose of antibiotics whose dosage is gradually reduced with
time in order to decrease the side-effects associated with long-term treatments. In clinical
settings, drug tapering strategies have been reported to be effective against the recurrent
episodes of Clostridium difficile infection that are attributed to both the disruption of the
intestinal microflora and to the persistence of spores [20, 33].

Tapered treatment protocols consist of either a stepwise or continuous decrease in dosage
over time. As the statement of our control problem (1) allows the continuous input of an
antibiotic into the system, then for the purpose of this paper we will consider the latter case
and thus define a tapering protocol as follows: begin treatment at the maximum dosage,
a property expressed through δ(0) = d and gradually decrease the input rate of the drug
with a rate of descent given by a parameter α ∈ [0, π/2]. So, mathematically, the control
is defined by δtap(α)(t) = tan(π − α)t + d. As a result, the case where α = 0 corresponds
to deploying antibiotic at its maximum possible dose at all times, while α = π/2 denotes
the situation where no antibiotic is used at all. Let t = tα be the first moment in time
when δtap(α)(t) = 0 and we do not deploy any antibiotic after that point, namely when
tα ≤ t ≤ T .

Each rate of descent, α, will produce a different control δtap(α)(t) with a corresponding
payoff given by J (δtap(α)). We will call the optimal tapering parameter, α∗ ∈ [0, π/2], that
parameter value for which

J (δtap(α∗)) = max
α∈ [0,π/2]

J (δtap(α)).

3.3. Adaptive pulsing. In order to precisely determine a near-optimal pulsing treatment
or even an optimal tapering strategy in practice, one would need a highly-calibrated math-
ematical model obtained using refined clinical, genomic and metabolic data with a detailed
understanding of the response of the host to the treatment. This is a daunting task. So
we ask for the following instead: is it possible to determine effective treatment strategies,
although perhaps suboptimal, based on the patterns of drug-susceptible and drug-resistant
pathogens observed over time in the host? In response to this we propose the development
of feedback controls that take information directly from observations of the host to adjust
the future course of treatment.

The difficulty with this approach is the appropriate design of the feedback. While it
may be possible to use linear feedbacks to stabilise the pathogen-free equilibrium of (1a-d),
we prefer feedbacks predicated on a simple maxim: if antibiotic resistance is high, cease
its use immediately. As we are considering the scenario where we only have one available
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antibiotic, this necessarily leads to controls that oscillate between periods of deployment
and non-deployment, thus we call them adaptive pulsing protocols.

Such feedback controls may be costly to implement. They require a continual supply
of information regarding the acquisition of drug-resistance genes by the pathogen and the
response of the pathogen load to treatment must be tracked. However, it may soon be
possible to effect the rapid genotyping of the drug-resistance genes found in a host during
infection [4]. So, here we will implement feedbacks based on a coarse information about the
condition of the host and its infection by making observations at discrete time intervals ϑ
units apart.

We first choose a feedback law by defining a function, or rule, that is applied to the
current state x(t) that tells us simply whether to use the drug or not, denote this binary rule
by δf (·). The adaptive pulsing control δap(ϑ)(t) is then given for t in the near-future time
interval (j ·ϑ, (j+1) ·ϑ), where j is an integer, and is determined in response to observations
made on the state of the system at the timepoint ϑ · j by setting δap(ϑ)(t) = δf (x(j · ϑ)).
The larger ϑ, therefore, the fewer the number of observations that are made on the state
of the host, and so the coarser the information utilised when determining the response of
the infection to the feedback rule δf (·). Of course, we would like to determine J -optimal
feedback rules, but it is not clear that they should exist for nonlinear systems like (1).

4. A single-host model

In order to numerically compare the efficacy of theoretical, optimal drug deployment
protocols with the other treatment strategies defined in the previous section, we now com-
plete the specification of the mathematical model (1). We begin by invoking a working
assumption that the concentrations of antibiotic both outside and inside each cell are the
same. Moreover, we will also assume that per unit time growth rate is simultaneously pro-
portional to transcription rate and to the uptake rate of the limiting carbon source in the
chemostat:

(6) cell growth rate ∝ resource uptake rate× transcription rate.

Hence the growth rate of each bacterial type is not only determined by the resource avail-
ability, S, but also by the concentration of the antibiotic, A. The veracity or predictive
power of such an assumption must be tested as it ignores several biological responses. For
example, any stress response that sees the down regulation of transcription due to low
resource availability cannot be captured by this model.

However, let us continue and represent resource uptake as a monotonic, saturating Monod
function in S, that is multiplied by an antibiotic-dependent conversion constant c(A), this
converts units of resource into units of biomass and describes the efficiency of cell production
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per unit resource. Thus the per-cell, per-unit time growth rate can be written in the form

G(S,A) =
Vmax S

K + S
· c(A)(7)

where Vmax represents a maximal resource uptake rate and K is a half-saturation constant
also known as the cell’s affinity for the limiting resource.

Working under the assumption that (6) holds for each cell and assuming that the an-
tibiotic molecule has no effect on the uptake of the limiting resource so that Vmax and K

are independent of A, it follows that the antibiotic reduces growth rate by reducing the
efficiency of the cell in this simple scenario. For example, if the cell were to compensate for
the reduction in growth rate suffered in the presence of antibiotic, it might, hypothetically,
up-regulate the synthesis of RNA polymerase. But this would have the effect of increasing
the resource needed to create a cell and so would lead to a decrease in efficiency.

We then write c(A) as a product of the cell conversion rate in an antibiotic-free envi-
ronment, c := c(0). Thus all cell population growth rates defined in equation (1) will have
the form G(S,A) = c · Vmax S

K+S · γ(A), where γ(A) is a dimensionless inhibition coefficient
derived from kinetic properties between drug molecules and their targets (as discussed in
Appendix A) that satisfies the following key properties:

γ(0) = 1, γ(A) ≥ 0 and γ′(A) ≤ 0 for all A ≥ 0.

In particular, for the numerical examples that appear later in the paper, we shall extend
the definition of the growth inhibition function derived in Appendix A by writing γ(A) =
(1 + κA)−1 = 1 − κA(1 + κA)−1 and then permiting a two-parameter dependence of the
form

(8) γ(A) = 1− κ1A

1 + κ2A
.

In this case limA→∞ γ(A) = 1 − κ1/κ2 and so, provided κ1 < κ2, γ(A) represents a
growth inhibition function that is uniformly bounded above complete inhibition.

In order to validate the core growth inhibition assumptions discussed above, we exper-
imentally verified the outcome of a simple model describing the dynamics of an isogenic
population of bacteria growing under resource limitation in a single flask (not the chemo-
stat, note) in the presence of a bacteriostatic antibiotic. This model is closely related to the
chemostat model described in (1) and defined by the following set of differential equations

d

dt
S = U(S) ·B,(9a)

d

dt
B = G(S,A) ·B,(9b)

d

dt
A = −aA ·B,(9c)
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with given initial conditions (S (0),B(0),A(0)). As before, S(t) is the concentration of
resource in the environment at time t, A(t) the concentration of antibiotic and B(t) the
density of the clonal population. Here U(S) denotes the resource uptake function U(S) =
VmaxS
K+S and we set G(S,A) = c · U(S) · γ(A).

So, as above, c is a constant that denotes a conversion rate for resource into biomass and
a is an antibiotic binding constant. The latter rests on the assumption that the antibiotic
adsorbs to each cell commensurate with the law of mass-action, although the resulting
model ignores known mechanisms of avoiding the uptake of antibiotics, with efflux pumps
for example.

Following the experimental methods detailed in [15] and using two translation-inhibiting
antibiotics, erythromycin and doxycycline, we obtained the dose-response curves for a strain
of E. coli exposed to different antibiotic concentrations shown in Figure 2. Dotted lines
represent experimental data with standard error bars and solid lines are predictions of the
model described by equations (9a-c).
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Figure 2. Dose-response curves of E. coli exposed to different antibiotic
concentrations. Dotted lines represent optical densities at 24 hours mea-
sured experimentally with standard error bars and solid lines are predic-
tions of the model described by equations (9a-c) with growth parameters
Vmax = 0.0000251µg/cell/h, K = 0.62 µg/ml, c = 1.8 · 104 cells/µg. (left)
Erythromycin: inhibition parameters are κ1 = 3.46 ml/µg and κ2 = 0.079
ml/µg; R2 = 0.973. (right) Doxycycline: inhibition parameters are κ1 =
0.068 ml/µg and κ2 = 0.198 ml/µg; R2 = 0.966.

The targets and the modes of action of both drugs are different: erythromycin is a
macrolide that binds to the 50s ribosomal subunit inhibiting protein synthesis and doxycy-
cline is a tetracycline that binds to the 30S subunit and inhibits binding of aminoacyl-t-
RNA to the acceptor site on the 70S ribosome. However, the model (9a-c) is sufficient to
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capture the dose-response data and we remark that equations (1a-d) are a natural, multiple-
phenotype extension of (9a-c) to a chemostat environment. The remainder of the paper
now returns to an analysis of the controllability properties of the former.

4.1. Complete competitive advantage. The discussion of the previous section indicates
that simple population-level models may be able to capture the inhibited growth kinetics
of different bacterial mutants with different antibiotic resistance profiles. In the case of
rifampicin, those mutants gain configurational changes to their β-subunits of RNA poly-
merase with respect to the wild-type configuration, moreover a mutation that may prove
beneficial if it arises in the presence of antibiotic may well have an associated cost at low
concentrations of that same antibiotic.

So, in order to describe this situation mathematically, we suppose that a bacterial clone,
the wild-type say, has the following growth rate profile (as usual, in an environment (S,A)
of limiting resource concentration S and antibiotic concentration A)

Gw(S,A) = cw · V
w

max S

Kw + S
· γw(A),

and that a mutant bacterium has the growth rate profile

Gm(S,A) = cm · V
m

max S

Km + S
· γm(A).

We define the term ‘antibiotic resistance’ of the mutant phenotype through the assumed
property that

lim
A→∞

Gw(S,A) < lim
A→∞

Gm(S,A),

but the cost of that resistance mutation is incurred through the property that

Gw(S, 0) > Gm(S, 0);

the latter means that a mutant bacterium sees a reduction in fitness in an antibiotic-free
environment.

We will call this wild-type bacterium antibiotic susceptible and the mutant will be called
antibiotic resistant, even though strictly speaking both types are susceptible to the drug. A
phenomenological or phenotypic mutation rate, ε, controls the rate at which the offspring
cells undergo the transition from susceptible wild-type to resistant mutant per cell division,
per unit time.

For the purposes of this paper it is our aim to engineer a model in which the pathogen
population is fitter than the commensal population, an assumption that is based on the idea
that a niche occupied by a commensal would be invaded by the pathogen if no antibiotic
treatment were given to the host or if the antibiotic were over-deployed. So, suppose that
both of the above bacterial types, the wild-type drug-resistant and mutant drug-susceptible,
are pathogenic strains and that there is third bacterium of an entirely different species that
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we deem to be the commensal. Suppose further that its growth response is given by the
functionGc(S,A). We say that the pathogen population has complete competitive advantage
if the following condition holds for all A ≥ 0 and S ≥ 0:

Gc(S,A) < max {Gw(S,A), Gm(S,A)} .

Thus, in all abiotic environments and at all antibiotic concentrations the pathogen has a
phenotype that is fitter than the commensal bacterium. In this scenario we might reasonably
expect the pathogen to out-compete the commensal for resources, irrespective of how the
antibiotic is deployed; this situation is illustrated in Figure 3.
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Figure 3. The pathogen population has complete competitive advantage:
(left) the percentage of growth inhibition as a function of the antibiotic
concentration present in the environment; (right) the bacterial growth rate
at a fixed resource concentration when the complete competitive advantage
property holds. The commensal has a lower growth rate than at least one
pathogen in all environments but no one bacterial clone is the fittest in all
environments. (Growth rate is quoted per hour.)
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5. Numerical examples

We now explicitly impose the condition that the commensal bacteria evolve slowly, so
slowly in fact that they form an isogenic and immutable lineage; for definiteness we set
n = 1. The pathogen can evolve drug resistance, however, and so we set m = 2 and
write P = (PS , PR), where PS is the susceptible wild-type pathogen and PR the antibiotic-
resistant, first-order mutant. The pathogen’s mutation matrix, therefore, is for this two-
phenotype system is set to

Mε =

(
1− ε ε

ε 1− ε

)
= (1− ε)I + ε

M︷ ︸︸ ︷(
0 1
1 0

)
.

The rationale supporting the strong and biologically unrealistic assumption of setting
n = 1 is the following. While the microbiota is composed from many different species, so
that we should really set n� 1 and we should allow commensals to evolve drug resistance,
we also require a model that has a stable ecology that is adapted to the environment and
its carbon sources in the absence of the pathogen. As we only have one carbon source for
reasons of modelling simplicity and with the competitive exclusion principle in mind, we
set n = 1. A useful modelling side-effect of this assumption is that it makes the task of
removing the pathogen yet more difficult: we thus have a highly evolvable pathogenic strain
in competition with an unresponsive commensal species.

Given this biological modelling construct, in order to evaluate the efficacy of different
drug deployment protocols using (1a-d) we will compute the approximations to J -optimal
controls by solving a regularised version of that optimisation problem using bvp4c in Matlab
(see Appendix B for details of the regularisation).

37 38 39 40 41 42

0

20

40

60

80

100

time (h)

a
n

ti
b

io
ti
c
 s

u
p

p
ly

 r
a

te
 (

%
 o

f 
m

a
x
im

iu
m

) Zoom of a near−optimal pulsing strategy

 

 
interpolant

solution at mesh point

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

time (h)

s
w

it
c
h

in
g

 f
u

n
c
ti
o

n

The switching function’s zeros define pulse lengths

drug on

drug off

Figure 4. (left) A zoom of the switching function and the J -optimal con-
trol computed for the set of parameters defined in Table 1: note the non-
uniformity of the computational mesh needed to resolve a spike in a near-
optimal pulsing control. (right) The switching function associated with the
left-hand plot.
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The switching function of a zoom into a typical solution of this problem, as illustrated
in Figure 4(right), touches zero precisely at the moments in time when it is necessary to
switch the antibiotic supply on or off in order to maximise the payoff functional J . Note, as
shown in the left-hand diagram of this figure, that bvp4c uses a non-uniform computational
mesh (shown as crosses superimposed upon the solution itself). The non-uniform meshing
property of the computational algorithm underpinning bvp4c is almost a necessity when
computing the spiking behaviour of optimal pulsing strategies.

5.1. A 48 hour race to colonise. We will compare the result of using six different an-
tibiotic usage strategies in the following specific situation: C(0) and PS(0) are positive
but in some sense ‘small’, well below the value they would achieve at carrying capacity in
each other’s absence. We will run the chemostat for 48 hours and seek control strategies
to ensure that the value of C(t) is greater than both PS(t) and PR(t) when t = 48. The
treatment will terminate at that time.

In addition to the J -optimal and other controls defined in section 3, we will implement
the following simple feedback control rule on this colonisation problem. It is designed to
stop the treatment when the resistant pathogens start to colonise the host, a heuristic that
can be interpreted as saying that the drug should only be used if the pathogen load is
sufficiently low:

FB : δf (x) =

{
d if PR < C + PS

0 otherwise,

where, here, x is to be interpreted as (S,C, PS , PR, A).

So, Figure 5(left column) illustrates the J -optimal control whereas Figure 5(centre col-
umn) shows an implementation of the rule FB using the same set of biological parameters
but based upon sampling the system every ϑ = 2 hours. Notice that the resulting puls-
ing control is similar to the optimal control, consisting of a large initial interval of drug
deployment followed by a series of short pulses.

Figure 5(right column) illustrates the optimal tapering control. In this figure control
decreases the supply of antibiotic at a rate given by α∗ = 0.72 and completely ceases the
supply of the drug when T ≈ 28h. Similarly, we can compute the optimal single-pulse
therapy (not shown) and we find that the optimal stopping time for that treatment occurs
when θ ≈ 24h.

The responses to all of these different control strategies are illustrated in Figure 6. They
show that although the single-pulse, feedback and tapering controls support the commensal
less than achieved with the J -optimal control, they still manage to maintain the commensal
in excess of the two pathogen phenotypes, a property that no fixed-dose protocol can achieve
in this scenario whereby the pathogen has complete competitive advantage.
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Figure 5. The figures in the top illustrate three different control strategies:
(left column) the optimal tapering control, (centre column) the feedback
control, (right column) the J -optimal control. The bottom figures show the
corresponding concentration of resource of antibiotic inside the chemostat
as a function of time that result from each control.

A feature of note that may be observed in Figure 7a is that some tapering parameters
produce controls with very poor performances and only a small subset of all the tapering
parameters lead to controls that outperform the feedback heuristic or the maximum de-
ployment of antibiotic. An analogous comment applies to single-pulse protocols whereby
the majority of stopping times fail to control the pathogens, a property that can be seen in
Figure 7b.

6. Conclusions

It is essential to state that the various optimality criteria presented here lead to optimal
controls that depend both in the length of the experiment T and also the initial condi-
tions of the system. This makes it very difficult to estimate or implement such optimal
solutions in practice, even worse they need not be robust to parametric uncertainties in
the model. Moreover, the optimal pulsing control is not only difficult to determine in a
practical scenario, but it is also difficult to synthesise in a theoretical model like the one
we are considering. The feedback controls, however, are probably the most practicable of
all the controls we have used. Moreover, it can be effective at supporting the commensal
bacterium for quite some time, even when the drug-resistant pathogen fixed in the pathogen
population.



18 PEÑA-MILLER, LÄHNEMANN, SCHULEMBURG, ACKERMANN AND BEARDMORE

0 10 20 30 40
0

2

4

6

8

10

12

14

Time (t)

lo
g

(d
e

n
s
it
ie

s
) 

(c
e

lls
/m

l)

a) No antiobiotics

 

 

Commensals

Susceptible pathogens

Resistant pathogens

0 10 20 30 40
0

2

4

6

8

10

12

14

Time (t)

b) Maximum dose

0 10 20 30 40
0

2

4

6

8

10

12

14

lo
g

(d
e

n
s
it
ie

s
) 

(c
e

lls
/m

l)

Time (t)

d) Optimal stopping

0 10 20 30 40
0

2

4

6

8

10

12

14

Time (t)

e) Feedback

0 10 20 30 40
0

2

4

6

8

10

12

14

Time (t)

f) Tapering control

0 10 20 30 40
0

2

4

6

8

10

12

14

Time (t)

c) Optimal control

Figure 6. Bacterial densities of pathogens and commensals for different
antibiotic deployment protocols lasting 48 h: a) no drug is deployed, b) max-
imum antibiotic deployment, c) the J -optimal, d) optimal single-pulse con-
trol, e) adaptive pulsing feedback control with measurements every ϑ = 2h
and f) optimal tapering control. In this example pathogens outcompete the
commensals if no drug is used (a) or if it is over-deployed (b), but commen-
sals have the highest final densities with each dynamic strategy implemented
(c-f) .

To see this, consider Figure 8(left) that shows a simulation of an experiment that
lasts T = 400 hours, where the adaptive pulsing strategy δf defined in FB results in an
adaptive pulsing protocol that appears from the computations to be eventually periodic
(if simulated for an even longer period). Each pulse of drug suppresses the antibiotic-
susceptible pathogenic phenotype but the non-deployment of antibiotic suppresses the re-
sistant pathogen due to the costs of resistance that it suffers from. It is clear from this
one example that with the correct timings of each pulse, it can be possible to support the
commensal population in this simple, chemostat-based model.

6.1. Dosage as a control variable. The feedback heuristic FB has two notable features if
the the maximum possible antibiotic dosage, A0, is permitted to vary between 0 and 2µg/ml
for T = 400 hours. First, there is an optimal value of the dose, A0 ≈ 0.7µg/ml, at which
the frequency of the pathogen population, relative to the commensal, is minimised when
the feedback is implemented. Figure 8(right) compares the result of using the feedback FB
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Figure 8. (left) Bacterial densities for the adaptive pulsing strategy at
T = 400 hours; the strategy FB with observations made every ϑ = 10
hours ensures that the commensal persists in an oscillatory manner with the
pathogen. (right) The frequency of pathogens at the end of the experiment
as a function of the antibiotic concentration in the supply vessel, A0. The
shaded areas represent the total frequencies of the susceptible and resistant
pathogens with a fixed-dose therapy: high doses of antibiotic select for re-
sistant pathogens, and low doses select for susceptible pathogens. The solid
line represents the relative frequency of pathogens at T = 400 hours for the
adaptive pulsing strategy.

with a fixed-dose monotherapy whereby δ(t) = d for all t between 0 and T , it shows that
the frequency of the pathogens is minimised for both treatments at the same value of A0.
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However, the feedback has a second notable property: there is a sense in which its
performance is robust to the overuse of antibiotics. If A0 is above its optimal value, as can
be seen in Figure 8(right), the pathogen load cannot exceed the density of the commensal
in spite of the pathogen population having complete competitive advantage.

This feature is particularly notable because fixed-dose therapies increase the frequency
of resistant pathogens as A0 increases, whereas the strategy FB yields the same pattern of
coexistence between pathogens and commensals independently of the drug concentration
A0, provided A0 > 0.7µg/ml in this particular example.

6.2. Other optimality criteria. As a final remark, we propose that even single-drug
antibiotic therapies could be successful in clearing pathogens from a host with a single bac-
teriostatic antibiotic in rather onerous circumstances. However, such therapies are dynamic
in time, use observation of the host to inform future course of treatment and, according
to theory they may well consist of pulses, namely time intervals both with and without
treatment.

There are many possible optimality criteria that could be augmented with a mathematical
model like (4) to evaluate different antibiotic treatment strategies. For example, we could
include an upper bound on the total amount of antibiotic that can be deployed and seek

max
{
J (δ) : δ ∈ Ω,

∫ T

0
δ(t) ≤ δ

}
where δ is a fixed parameter from which this bound is derived. One can show that antibiotic
pulsing provides an effective, near-optimal set of strategies for this problem too, irrespective
of the weight vector w used in the definition of J .

However, there is absolutely no reason that the treatment length T should not be included
in the control variable to be determined, in addition to the antibiotic supply concentration.
Hence, if A is a physical upper bound on the drug concentration, such as the concentration
at which it remains soluble or harmless to the host, we could seek

max{J (δ) : 0 ≤ A0 ≤ A, T ≥ 0, δ ∈ Ω}.

However, the inclusion of T as an unknown is a substantial change to the mathematical
nature of this control problem and it is not clear if pulsing maintains its favourable status
for this new formulation.
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Appendix A. Growth inhibition coefficient

Antibiotics are termed bactericidal if they lead to bacterial cell death, for example by
inhibiting cell wall biosynthesis and therefore enhancing the likelihood of cell lysis. They
are said to be bacteriostatic if they suppress the bacteria’s growth rate by inhibiting DNA
replication, RNA transcription or by interfering with protein synthesis and cellular metab-
olism but without leading to cell lysis. For example, the bacteriostatic antibiotic rifampicin
inhibits the function of RNA polymerase during transcription by binding to its β subunit
[36], while streptomycin targets the 30S ribosomal subunit and inhibits translation [25].
Resistance to antibiotics may therefore arise through mutations that alter the structure of
the protein or subunit targeted by the drug, although such mutations can come at a cost of
reduced fitness of the mutant bacterium upon its return to an antibiotic-free environment
[19, 2, 14].

With rifampicin in mind and following [1] we can describe the inhibition of transcription
by an RNA polymerase-binding antibiotic with the following kinetic model. In this highly-
simplified model σ denotes the concentration of free sigma factors in the cell that are
needed for the initiation of transcription and P represents the concentration of free RNA
polymerase that must bind to a gene’s promoter region to initiate the transcription of DNA
into mRNA. Hence Pσ is the concentration of mature transcription complexes, all other
transcription factors and phosphorylation processes will be neglected completely from the
model. The variable R will denote the concentration of unbound gene promoter regions so
that PRσ is a complex that can initiate transcription of mRNA, the latter at a concentration
denoted M . The variable A will represent the concentration of an antibiotic molecule that
binds to P to form a non-functional polymerase-antibiotic complex with concentration
denoted PA.

We describe this process as the following kinetic model:

σ + P
k1−−⇀↽−−
k−1

Pσ, P +A
k2−−⇀↽−−
k−2

PA,

σ + PA
k3−−⇀↽−−
k−3

PAσ , Pσ +R
k4−−⇀↽−−
k−4

PRσ
k5−→ R+ Pσ +M.

This model assumes that the antibiotic works by producing A-bound polymerase complex
PA and PAσ that prevent the binding of the mature transcription complex to the chromo-
some, thus reducing the rate of RNA production. The latter is given by k5P

R
σ because PRσ

is the fraction of gene promoter regions that are bound by a mature transcription complex.
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We therefore propose that the mechanism by which an antibiotic like rifampicin in-
hibits RNA transcription may be described phenomenologically with the following system
of equations, suitably augmented with initial conditions:

d

dτ
σ = −k1σ · P + k−1Pσ − k3σ · PA + k−3P

A
σ ,(10a)

d

dτ
A = k−2PA − k2P ·A,(10b)

d

dτ
P = −k1σ · P + k−1Pσ − k2A · P + k−2PA,(10c)

d

dτ
PA = k2P ·A− k−2PA − k3PA · σ + k−3P

A
σ ,(10d)

d

dτ
Pσ = k1σ · P − k−1Pσ + (k5 + k−4)PRσ − k4Pσ ·R,(10e)

d

dτ
PAσ = k3PA · σ − k−3P

A
σ ,(10f)

d

dτ
PRσ = k4Pσ ·R− (k5 + k−4)PRσ ,(10g)

d

dτ
R = −k4Pσ ·R+ (k5 + k−4)PRσ ,(10h)

d

dτ
M = k5P

R
σ .(10i)

The variable τ here denotes a very fast timescale relative to cell division that describes
the production of a single transcript, the variable t will be used elsewhere to denote the
slower timescale pertinent to cell growth. Note that the total concentration of bound and
unbound polymerase does not change over time and so we may define the following constant

Ptot := P + PA + Pσ + PAσ + PRσ .

Let us now assume that the processes are in equilibrium, apart from the production of RNA
itself which we assume to occur much more slowly than the binding and unbinding of other
complexes. This quasi-steady-state assumption imposes

d

dτ
M 6= 0 but

d

dτ
R =

d

dτ
PRσ =

d

dτ
PAσ =

d

dτ
PA =

d

dτ
Pσ = 0.

We therefore deduce that PA = P · A · k2/k−2 and so it will be convenient to define
κj := kj/k−j for all j = 1, ..., 5. Similarly,

PRσ =
k4Pσ ·R

(k5 + k−4)
and PAσ = κ3Pσ ·A

and we now need to determine an expression for Pσ. However, from (10e), (k−1+k4R)·Pσ =
k1σ · P + (k5 + k−4)PRσ = k1σ · P + k4Pσ ·R and so we deduce that Pσ = κ1σ · P .
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Finally, therefore,

Ptot = P + PA + Pσ + PAσ + PRσ

= P + κ2P ·A+ κ1P · σ + κ1κ3P · σ ·A+
κ1k4

k−4 + k5
P · σ ·R

and the rate or velocity of mRNA transcription, d
dτM , is given by v := k5P

R
σ and so we

define

(11) v = v(A) := k5P
R
σ =

κ1k4k5

k5 + k−4
· R · σ · Ptot

1 + κ1σ + κ145R · σ +A(κ2 + κ1κ3σ)
,

where κ145 := κ1k4/(k5 + k−4).

The rate of RNA production, v(A), in (11) tends to zero as A → ∞ leading the cell
ever-closer to complete inhibition. Note that the rate of production of RNA in the absence
of antibiotic is given by

v(0) = k5P
R
σ =

κ1k4k5

k5 + k−4
· R · σ · Ptot

1 + κ1σ + κ145R · σ
and therefore the relative decrease in transcription rate due to the presence of antibiotic
can be described by a dimensionless inhibition function of the form

(12) γ(A) =
v(A)
v(0)

=
1

1 +A
(

κ2+κ1κ3σ
1+κ1σ+κ145R·σ

) =:
1

1 + κA
,

for some parameter κ = κ(σ,R) ≥ 0 that can be thought of as the phenotype of each cell.
Note that κ is a single-cell measure of antibiotic efficacy in the sense that if A50 is the
antibiotic concentration required to halve the transcription rate, then A50 = 1/κ.

We used the one-parameter freedom in (12) to fit the binding affinity data of rifampicin
and the related antibiotic molecule rifabutin, with a similar mode of action, to RNA poly-
merase using data taken from [38]. The result is shown in Figure 9 where the R2 values of
the least-squares fitting procedure are given in the legend of the figure. While this gives
good and, perhaps, expected agreement between this simple model and antibiotic-target
binding data, it does not demonstrate that transcription rate decreases with antibiotic
concentration in the same manner as (12), but the data is at least consistent with this
hypothesis.

While this is a vast over-simplification of the true molecular biology that does not include
features like RNA degradation or the energy cost in terms of the ATP required during
transcription, this model will at least provide us with some broad insights into how an
antibiotic like rifampicin slows transcription and so inhibits cell growth. We could go
further in the model and include the fact that rifampicin-bound polymerase can bind to
gene promoters to produce short RNA oligomers (trimers) [38]. This more complex model,
however, leads to an inhibition form that closely resembles the one presented above in
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Figure 9. Effects of Rifampicin (Rif) and Rifabutin (Rfb) on the binding of
3H rifampin to wild-type RNAP. This data was obtained by competing each
antibiotic for radioactively marked Rif, 3H-rif, with a fixed concentration of
250nM and a reduction in the bound radioactive molecule is assumed to be
due the binding of the non-radioactive drug. (Data taken from [38, Figure 3]
where no error bars are given, R2 values are provided in the figure legend.)
This illustrates that the fraction of Rif and Rfb-free RNAP as a function
of the concentration of each drug follows a curve of the form 1/(1 + κ · A)
where A is the drug concentration and κ is a parameter used in the datafit.

(12) but whose derivation is somewhat more lengthy, so we have omitted it for the sake of
brevity.

Appendix B. An entropic regularisation

It will be convenient for the purpose of numerically calculating near-optimal controls
with respect to the functional J (δ) defined in (3) to regularise it by introducing ‘entropy’

e(δ) := δ ln δ + (d− δ) ln(d− δ)

and then defining

Jη(δ) := −η
∫ T

0
e(δ)dt+ J (δ),

where η is a temperature-like parameter. We will then seek a solution of the unconstrained
optimal problem

(13) find δ∗(η) ∈ L∞[0, T ] such that Jη(δ∗(η)) = sup{Jη(δ) : δ ∈ L∞[0, T ]}.

It is possible to prove from the convexity properties of the function e(·), upon defining
an optimal control δ∗ by

(14) δ∗ ∈ L∞[0, T ] satisfies J (δ∗) = sup{J (δ) : δ ∈ L∞[0, T ], 0 ≤ δ ≤ d},
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that δ∗(η) ∗⇀ δ∗ in L∞ as η → 0, provided η > 0.

This regularisation allows us to determine δ∗(η) using a numerical continuation procedure
akin to annealing in order to compute small-η optimal controls. This procedure starts with
η at a high value with an initial guess of δ∗guess = d/2 and then reduces η. By coupling this
continuation algorithm to an adaptive meshing strategy, we can resolve the switches that
are typically present in the optimal control δ∗. We used the Matlab code bvp4c [16] to
implement this numerical continuation strategy.

To understand the effect of the regularisation in more detail, a necessary condition for
the optimality of δ∗ with respect to J states, using the Pontryagin Maximum Principle,
that the associated Hamiltonian

H(x,λ, δ) := 〈w,x〉+ 〈λ,F(x) + δA0e〉

is maximised along the optimal trajectory. Here λ = (λS , λC , λP , λA) ∈ R1+n+m+1 is an
adjoint variable that satisfies the adjoint equation (15a) below

−λ̇ = w +∇F(x)Tλ, λ(T ) = 0,(15a)

ẋ = F(x) + δA0e, x(0) given.(15b)

The regularised functional Jη requires a suitably modified Hamiltonian, namely

(16) H̃(x, λ, δ; η) = H(x, λ, δ)− ηe(δ).

Observe that the only terms in (16) that depend on the control variable δ are

(17) 〈λ, A0δe〉 − ηe(δ) = A0δ〈λ, e〉 − ηe(δ) = A0δ · λA − ηe(δ)

and so we define
h(δ) := λAA0δ − ηe(δ).

As η > 0, the modified Hamiltonian H̃ is maximised with respect to δ when 0 = h′(δ) =
λAA0 − ηe′(δ), a condition that holds if and only if log

(
δ
d−δ

)
− A0λA

η = 0 from where we
can derive an expression for δ in terms of the regularisation parameter η and the adjoint
variable λA:

δ = δ(η, λA) := d/(1 + e−A0λAη
−1

).

Substituting this expression for δ into (15) we then obtain a boundary-value differential
equation for (x,λ) and, from standard regularity results, we then deduce that the regu-
larised optimal control δ∗(η)(t) = δ(η, λA(t)), when it exists, is analytic in t. Moreover, the
constraint 0 < δ(η, λA(t)) < d is clearly satisfied for all t ∈ [0, T ], strictly so for η > 0.

If we now define Λ := (ΛS ,ΛC ,ΛP ,ΛA) = λ/η, then Λ satisfies the final-value equation

(18) −Λ̇ = wη−1 +∇F(x)TΛ, Λ(T ) = 0,

and the control associated with it can be computed from δ(η)(t) = d/(1 + e−A0ΛA(t)).
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This calculation illustrates that equation (15) is singularly perturbed with respect to η
near η = 0. It is this singular perturbation that results in the appearance of internal layers
where the regularised optimal control δ∗(η) switches between the two extreme states, δ = 0
and δ = d, necessitating the use of non-uniform computational meshes. As the behaviour of
λA(t) decides when the control switches from one regime to the other, this is the switching
function.

However, (15) is regularly perturbed about η =∞ in the sense that we can formally sub-
stitute η =∞ in (18) and find a solution of the resulting differential equation. The resulting
solution is analytic, unique and satisfies Λ(t) ≡ (0, 0, 0, 0) from where the corresponding
optimal control is given by the maximum entropy state. This occurs at max0≤δ≤d(−e(δ)),
namely when δ = d/2, and we therefore conclude that

lim
η→∞

δ∗(η) =
d

2

in a C1 sense. This argument can be made rigorous using the implicit function theorem
and it provides an initial guess (the function δ∗guess = d/2) for the numerical annealing
procedure.

Finally, as ΛA(T ) = 0 it follows that δ∗(η)(T ) = d(1 + e0)−1 = d/2 and so the regu-
larisation introduces an artefact which forces the regularised control to equal d/2 at the
end-point of the time domain, T .

Appendix C. Model parameters: complete competitive advantage

Table 1. Model parameters for which the pathogen population has com-
plete competitive advantage over the commensal.

Parameter Description Value
d Chemostat dilution rate 0.6h−1

ε Rate of phenotypic mutations 0.1 per cell per hour
a∗p & a∗c antibiotic-cell binding rates 4 · 10−6µg/cell/hr

for each bacterial types (c, w and m)
c Resource-cell conversion rate 1× 106cell/µg

in antibiotic-free environment
K Half-saturation constant for all 0.06µg/ml

bacterial types (c, w and m)
V ∗max Maximal resource uptake rate µcmax = 1.2/h, µwmax = 1.6/h

of bacterial type ∗, V ∗max = µ∗max/c µmmax = 1.0/h
S0 Resource supply concentration 1µg/ml
A0 Antibiotic supply concentration 2µg/ml
κ∗1 Affinity for antibiotic of κc1 = κw1 = κm1 = 0.05ml/µg

bacterial type ∗
κ∗2 Maximal growth inhibition κc2 = 0.71ml/µg, κw2 = 0.5ml/µg,

of bacterial type i κm2 = 0.9ml/µg


