PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000-000 S 0002-9939(XX)0000-0

SEQUENTIAL AND CONTINUUM BIFURCATIONS IN DEGENERATE ELLIPTIC EQUATIONS

R.E. BEARDMORE AND R. LAISTER

ABSTRACT. We examine the bifurcations to positive and sign-changing solutions of degenerate elliptic equations. In the problems we study, which do not represent Fredholm operators, we show that there is a critical parameter value at which an infinity of bifurcations occur from the trivial solution. Moreover, a bifurcation occurs at each point in some unbounded interval in parameter space. We apply our results to non-monotone eigenvalue problems, degenerate semi-linear elliptic equations, boundary value differential-algebraic equations and fully non-linear elliptic equations.

1. INTRODUCTION

In this paper we consider the non-linear, degenerate eigenvalue problem

- (1) $Lg(u) = \lambda u, \qquad x \in \Omega := (0,1),$
- (2) $u = 0, \quad x \in \partial\Omega,$

where $Lu := -(a(x)u_x)_x + b(x)u$ and the coefficients $a, b \in C^1(\overline{\Omega})$ satisfy a > 0and $b \ge 0$ on $\overline{\Omega}$. Consequently L is uniformly elliptic, but the non-linear function $g \in C^1(\mathbb{R})$ is assumed to degenerate at zero with g(0) = g'(0) = 0.

Let us define $\gamma(u) = g(u)/u$ with $\gamma(0) = 0$ and begin with the statement of our assumptions on g:

G1. g is an odd, strictly increasing function on \mathbb{R} ,

- G2. γ is strictly increasing for u > 0,
- G3. $\gamma(u) \to \infty$ as $|u| \to \infty$.

These are all satisfied if, for instance, $g(u) = u|u|^m$, where m > 0.

Definition 1.1. Let X, Y be Banach spaces, $F : X \times \mathbb{R} \to Y$ be continuous and satisfy $F(0, \lambda) = 0$ for all $\lambda \in \mathbb{R}$. Let $\Sigma \subset X \times \mathbb{R}$ denote the set of all non-trivial $(u \neq 0)$ solutions of $F(u, \lambda) = 0$. We say that λ_0 is a sequential bifurcation point from the trivial solution for $F(u, \lambda) = 0$ if there is a sequence $(u_n, \lambda_n) \in \Sigma$ such that $(u_n, \lambda_n) \to (0, \lambda_0)$ in $X \times \mathbb{R}$ as $n \to \infty$. If such a sequence (u_n, λ_n) lies in some connected set $\mathcal{C} \subset \Sigma$, then λ_0 is said to be a *continuum bifurcation point*.

We prove the following for (1-2). To each $\lambda > 0$ there is a sequence $u_n(\lambda) \in C^0(\overline{\Omega})$ of solutions of (1-2) such that (i) the number of zeros of $u_n(\lambda)$ in Ω is n, (ii) $u_n(\lambda) \to 0$ in $C^0(\overline{\Omega})$ as $n \to \infty$, (iii) $u_n(\lambda) \to 0$ in $C^0(\overline{\Omega})$ as $\lambda \to 0$, (iv) every

 $\odot 1997$ American Mathematical Society

Received by the editors May 1, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 34A09, 34B60, 35B32, 35J60, 35J70.

Key words and phrases. Degenerate elliptic equations, sequential and continuum bifurcations, differential-algebraic equations, degenerate diffusion.

 $\lambda > 0$ is a sequential bifurcation point but *not* a continuum bifurcation point and (v) $\lambda = 0$ is a continuum bifurcation point.

We remark that the theory in [1] could be used to obtain *local* versions of some of the results proved here. However, our results are complementary to [1] in that they are global and impose no conditions on the growth of g^{-1} near zero. Furthermore, we establish the existence of an unbounded interval of sequential bifurcation points. For the special case $g(u) = u|u|^m$, we note that a global branch of positive solutions was shown to exist in [2] in a study of flows in porous media.

The remainder of the paper is structured as follows. Section 2 introduces some notation and preliminary results. The main results of the paper appear in Section 3. Finally, in Section 4 we apply our results to non-monotone degenerate eigenvalue problems, degenerate semi-linear elliptic equations, boundary value differentialalgebraic equations and fully non-linear elliptic equations.

2. Preliminaries

Throughout we write \overline{U} for the closure of U in a given metric space. We denote by $C^k(\overline{\Omega})$ the space of k-times differentiable functions on $\overline{\Omega}$, henceforth written simply as C^k when there is no ambiguity. We note here that the imbedding $C^k \hookrightarrow C^r$ is compact if k > r. For any $u \in C^0$ with finitely many zeros we shall denote the number of zeros of u in Ω by $\zeta(u)$.

It is well known that $L: C^2 \to C^0$ together with the Dirichlet boundary condition (2) has positive, simple eigenvalues henceforth denoted by μ_j for $j \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, where the principal eigenvalue μ_0 has an associated positive eigenfunction ϕ_0 . Furthermore, L has a continuous inverse $K: C^0 \to C^2$ which induces a compact linear map $K: C^0 \to C^0$.

The problem of finding continuous solutions of (1-2) with $g(u(\cdot)) \in C^2$ is therefore equivalent to

(3)
$$F(u,\lambda) := g(u) - \lambda K u = 0, \qquad u \in C^0$$

where $g: C^0 \to C^0$ is the C^1 Nemytskii operator for g defined by (g(u))(x) = g(u(x)). Our approach to solving (3) will be based on the regularized problem

(4)
$$F(u,\lambda;\varepsilon) := g(u) + (\varepsilon I - \lambda K)u = 0, \qquad \varepsilon \ge 0.$$

We define some solution sets. Throughout $E := C^0 \times \mathbb{R}$ is endowed with the norm $||(u, \lambda)||_E = ||u|| + |\lambda|$, where $||\cdot||$ denotes the sup-norm on C^0 . The symbol $\langle \cdot, \cdot \rangle$ denotes the usual L^2 inner product. For $\varepsilon \ge 0$, $\Sigma(\varepsilon) \subset E$ will denote the set of non-trivial solutions (u, λ) of $F(u, \lambda; \varepsilon) = 0$ in E. For $j \in \mathbb{N}_0$ we write $\Sigma_j(\varepsilon)$ for the subset of $\Sigma(\varepsilon)$ consisting of functions with j zeros in Ω . By $\Sigma_j^+(\varepsilon)$ ($\Sigma_j^-(\varepsilon)$) we denote the subset of $\Sigma_j(\varepsilon)$ of functions u such that $g(u)_x(0) > 0$ ($g(u)_x(0) < 0$). For notational convenience we will simply write Σ instead of $\Sigma(0)$ and Σ_j^{\pm} for $\Sigma_j^{\pm}(0)$. We note here that since g is odd, $(u, \lambda) \in \Sigma(\varepsilon)$ if and only if $(-u, \lambda) \in \Sigma(\varepsilon)$. Consequently $\Sigma_j^-(\varepsilon) = -\Sigma_j^+(\varepsilon)$.

Remark 1. The map $F: C^0 \times \mathbb{R} \to C^0$ is C^1 and has partial Fréchet derivative $d_u F(u, \lambda)[h] = g'(u)h - \lambda Kh$ which is not a Fredholm mapping at u = 0 since g'(0) = 0. Consequently, one cannot use reduction methods based on the implicit function theorem to study bifurcations of (3) from the trivial solution. See also [3, 4, 15]. Moreover, $d_u F(0, \lambda) = -\lambda K$ which, for $\lambda \neq 0$, has point spectrum and zero in the essential spectrum, but when $\lambda = 0$ the spectrum consists only of zero.

Lemma 2.1. Fix $\varepsilon \ge 0$. If $(u, \lambda) \in \Sigma(\varepsilon)$, then $\lambda > 0$; that is $\Sigma(\varepsilon) \subset C^0 \times (0, \infty)$.

Proof. Multiplying the relation $F(u, \lambda; \varepsilon) = 0$ by u and integrating over Ω gives, after setting v = Ku,

$$\int_{\Omega} \varepsilon u^2 + ug(u) \, dx = \lambda \int_{\Omega} uKu \, dx = \lambda \int_{\Omega} vLv \, dx$$

Noting that $ug(u) \ge 0$ and $\langle v, Lv \rangle \ge 0$, the result follows.

Lemma 2.2. For $\varepsilon \in [0,1]$ the following a priori bound applies: to each $\ell > 0$ there is an $M(\ell) > 0$, independent of ε , such that if $\lambda \in [0,\ell]$ then $||u|| \leq M(\ell)$ whenever $(u, \lambda) \in \Sigma(\varepsilon)$.

Proof. Suppose that $\varepsilon u + g(u) = \lambda K u$, where $0 \le \varepsilon \le 1, 0 \le \lambda \le \ell$ and let $x_0 \in \Omega$ satisfy $||u|| = |u(x_0)|$. Then

$$||g(u(x_0))| - | -\varepsilon u(x_0)|| \le |g(u(x_0)) + \varepsilon u(x_0)| \le \lambda ||K|| |u(x_0)|,$$

where ||K|| denotes the operator norm of $K \in BL(C^0)$. We therefore obtain $\gamma(||u||) \leq \lambda ||K|| + \varepsilon \leq \ell ||K|| + 1$. Noting that $\gamma|: [0, \infty) \to [0, \infty)$ is surjective (by G3) and non-decreasing (by G2), the result follows on defining $M(\ell)$ to be any positive solution of $\gamma(M) = \ell ||K|| + 1$.

Since $\varepsilon + g'(u) \ge \varepsilon > 0$ for all $u \in \mathbb{R}$ and $\varepsilon > 0$, the algebraic equation $\varepsilon u + g(u) = v$ has a unique solution $u = G(v; \varepsilon)$, where $G(\cdot; \varepsilon) \in C^1(\mathbb{R})$. When $\varepsilon = 0$ we simply have $G(v; 0) = g^{-1}(v)$, which is continuous. Moreover, $G : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ is continuous. We shall use this notation throughout and in the following theorem, which is a consequence of global bifurcation theory.

Theorem 2.3. For each $\varepsilon > 0$ and $j \in \mathbb{N}_0$, there are open, connected and unbounded sets $C_j^{\pm}(\varepsilon) \subset \Sigma_j^{\pm}(\varepsilon)$ such that $(0, \varepsilon\mu_j) \in \overline{C_j^{\pm}(\varepsilon)}$. Furthermore, for every $\lambda > \varepsilon\mu_j$ there exist $(\pm u_{j,\varepsilon}, \lambda) \in C_j^{\pm}(\varepsilon)$, so that $(\varepsilon\mu_j, \infty) \subset \Pi(C_j^{\pm}(\varepsilon))$, where $\Pi : E \to \mathbb{R}$ is the natural projection.

Proof. For each fixed $\varepsilon > 0$, apply global bifurcation results [13] to $v = \lambda KG(v; \varepsilon)$ and use the nodal properties of solutions to regular elliptic equations to demonstrate the existence of disjoint, unbounded continua $C_j^{\pm}(\varepsilon)$ with the stated properties. The existence of $(\pm u_{j,\varepsilon}, \lambda)$ for $\lambda > \varepsilon \mu_j$ follows from the unboundedness of $C_j^{\pm}(\varepsilon)$ in E, Lemma 2.1 and Lemma 2.2.

If u is a non-trivial solution of (4) with $\varepsilon > 0$ then the zeros of the function $\varepsilon u + g(u)$ are transverse. The following result shows that transversality persists when $\varepsilon = 0$.

Theorem 2.4. (See [9, Theorem 2.2]). Suppose that $f \in C^0(\mathbb{R})$ is strictly increasing and f(0) = 0. If $u \in C^2(\overline{\Omega})$ is a solution of the initial value problem Lu = f(u) on $\overline{\Omega}$ with $u(\alpha) = u_x(\alpha) = 0$ for some $\alpha \in \overline{\Omega}$, then $u \equiv 0$ on $\overline{\Omega}$. Furthermore, u has a finite number of zeros in $\overline{\Omega}$.

Corollary 2.5. If $(u, \lambda) \in \Sigma$ then $\zeta(u) = \zeta(g(u)) < \infty$ and all zeros of g(u) in $\overline{\Omega}$ are transverse. In particular, $\Sigma = \bigcup_{i=0}^{\infty} (\Sigma_i^+ \cup \Sigma_i^-)$.

Proof. If $(u, \lambda) \in \Sigma$ and v := g(u), then $Lv = \lambda g^{-1}(v)$. The result follows from Lemma 2.1 and Theorem 2.4 with $f(v) = \lambda g^{-1}(v)$.

3. The main results

In this section we prove the main results on the existence of non-trivial solutions of (3) and the nature of bifurcation points.

3.1. Existence of non-trivial solutions. We begin with an existence and uniqueness result for elliptic equations.

Lemma 3.1. Suppose $Au := -(\alpha(x)u_x)_x + \beta(x)u$, where α and β satisfy the same assumptions as a and b. Let $\lambda > 0$ and $\varepsilon \ge 0$ be fixed. If there exists a positive subsolution ψ of the elliptic problem

(5)
$$Av = \lambda G(v; \varepsilon), \qquad v(0) = v(1) = 0.$$

then there exists a unique non-trivial, non-negative solution v of (5). Moreover, $v \ge \psi$.

Proof. By assumption G3, $\lim_{v\to\infty} G(v;\varepsilon)/v = 0$ for fixed $\varepsilon \ge 0$. In particular this implies that $\limsup_{v\to\infty} \lambda G(v;\varepsilon)/v < \kappa_0$, where κ_0 denotes the principal eigenvalue of A. It is well known [6, 11] that non-negative solutions of the associated parabolic problem

(6)
$$v_t = -Av + \lambda G(v;\varepsilon), \qquad v(0,t) = v(1,t) = 0$$

(with continuous initial condition $v(x, 0) = v_0(x)$) have non-empty omega-limit sets $\omega(v_0)$ contained in the equilibrium set, comprising of solutions of (5). In particular, since ψ is also a subsolution of (6), there exists a solution v of (5) such that $v \ge \psi$. It therefore remains only to establish the uniqueness of v.

Suppose w is any non-trivial, non-negative solution of (5). By G1 and the maximum principle, w > 0 in Ω . Now, $\int_0^1 vAw - wAv \ dx = 0$ so that

$$\lambda \int_0^1 v G(w;\varepsilon) - w G(v;\varepsilon) \ dx = \int_0^1 \lambda v w \left(\frac{G(w;\varepsilon)}{w} - \frac{G(v;\varepsilon)}{v} \right) \ dx = 0.$$

By G2, $s \mapsto G(s; \varepsilon)/s$ is decreasing for all s > 0. Hence if v and w are ordered in C^0 , then v = w and v is unique. If v and w are not ordered in C^0 then, for any $v_0 \ge \max\{v, w\}, \, \omega(v_0)$ must contain a solution z of (5) such that $z \ge \max\{v, w\}$, whence $z \ne v$ and $z \ne w$. Hence z and v are ordered in C^0 and the above argument (with w replaced by z) yields z = v, a contradiction.

The following result is crucial, showing that non-trivial *j*-zero solutions of the regularized problem (4) cannot accumulate on the trivial branch as $\varepsilon \to 0$, except possibly at the origin.

Proposition 3.2. Let $j \in \mathbb{N}_0$ be fixed and $0 \leq \varepsilon_n \to 0$ as $n \to \infty$. If $(u_n, \lambda_n) \in \Sigma_j^+(\varepsilon_n)$ satisfies $(u_n, \lambda_n) \to (0, \lambda)$ in E as $n \to \infty$, then $\lambda = 0$. An analogous result holds for $\Sigma_j^-(\varepsilon_n)$.

Proof. Necessarily $\lambda \geq 0$ by Lemma 2.1, so suppose that $\lambda > 0$. We first consider the case j = 0 (positive solutions). Fix $\lambda_* \in (0, \lambda)$ and choose n_0 such that $\varepsilon_n < \min\{\mu_0, (\lambda_*/\mu_0)\}$ and $\lambda_n > \lambda_*$ for all $n > n_0$. By the degeneracy of g there is a U > 0 (independent of n) such that $g(u) + \varepsilon_n u \leq (\lambda_*/\mu_0)u$ for all $u \in [0, U]$ and $n > n_0$. Hence there is a V > 0 (independent of n) such that $G(v; \varepsilon_n) \geq (\mu_0/\lambda_*)v$ for all $v \in [0, V]$ and $n > n_0$. Let us normalise the principal eigenfunction of L, ϕ_0 , so that $\|\phi_0\| = V$. Since $G(\phi_0, \varepsilon_n) \ge (\mu_0/\lambda_*)\phi_0$ it follows that

$$-L\phi_0 + \lambda_n G(\phi_0; \varepsilon_n) \ge -L\phi_0 + \lambda_n (\mu_0/\lambda_*)\phi_0 \ge 0$$

and so ϕ_0 is a subsolution of

(7)
$$Lv = \lambda_n G(v; \varepsilon_n), \qquad v(0) = v(1) = 0.$$

Hence by Lemma 3.1 there exists a unique positive solution w_n of (7) and $w_n \ge \phi_0$. Now, $v_n := \varepsilon_n u_n + g(u_n)$ is also a positive solution of (7) and so by uniqueness $v_n = w_n$. But since $v_n = \lambda_n K u_n$ and $u_n \to 0$ in C^0 as $n \to \infty$ it follows that $v_n \to 0$ in C^2 . In particular, by Hopf's boundary point lemma [12] applied to ϕ_0 , there exists an $n_1 > n_0$ such that $v_n < \phi_0$ in Ω for all $n > n_1$, a contradiction. This proves the result for j = 0. The result for $\Sigma_j^-(\varepsilon_n)$ is a trivial consequence of the symmetry of g.

Now suppose that $j \ge 1$. If ξ_n^i (i = 0, ..., j + 1) denote the zeros of u_n in $\overline{\Omega}$ in increasing order, let $\delta_n^i = \xi_n^{i+1} - \xi_n^i$ (i = 0, ..., j). Then $v_n := \varepsilon_n u_n + g(u_n)$ (suitably restricted) is a constant sign solution of

(8)
$$Lv = \lambda_n G(v; \varepsilon_n), \qquad v(\xi_n^i) = v(\xi_n^{i+1}) = 0.$$

Since $\sum_{i=0}^{j} \delta_{n}^{i} \equiv 1$, we can assume for some *i* that δ_{n}^{i} (=: δ_{n}) remains uniformly bounded away from zero. Passing to a subsequence if necessary we may assume that $\delta_{n} \to \delta_{\infty} \in (0, 1]$ as $n \to \infty$. Now rescale the spatial variable *x* in (8) according to $x \mapsto (x - \xi_{n}^{i+1})/\delta_{n}$ and, without loss of generality by the symmetry of *g*, we obtain a sequence v_{n} of positive solutions of

(9)
$$L_n v = \lambda_n G(v; \varepsilon_n), \qquad v(0) = v(1) = 0,$$

with $v_n \to 0$ in C^2 , where $L_n v := -\delta_n^{-2} (a(x)v_x)_x + b(x)v$. If we denote by $\{\mu_0^n, \phi_0^n\}$ the principal eigenpair of the operator L_n , then spectral perturbation results for simple eigenvalues [7] show that $\mu_0^n \to \mu_0^\infty$, the principal eigenvalue of L_∞ , and $\phi_0^n \to \phi_0^\infty$ in C^2 , where ϕ_0^∞ is the corresponding principal eigenfunction.

Note that there is a V > 0 (independent of n) and an $n_2 > n_0$ such that $G(v; \varepsilon_n) \ge (\mu_0^{\infty} + 1)v/\lambda_*$ for all $v \in [0, V]$ and $n > n_2$. If ϕ_0^n is normalised so that $\|\phi_0^n\| = V$ then

$$(10) \quad -L_n \phi_0^n + \lambda_n G(\phi_0^n; \varepsilon_n) \ge -L_n \phi_0^n + \lambda_n (\mu_0^\infty + 1) \phi_0^n / \lambda_* \ge (\mu_0^\infty + 1 - \mu_0^n) \phi_0^n \ge 0,$$

for all $n > n_2$ and so ϕ_0^n is a positive subsolution of (9) for all such n. An identical argument to the j = 0 case then leads to a contradiction as before.

We can now prove the following existence result for (3).

Theorem 3.3. Let $\lambda > 0$ and $j \in \mathbb{N}_0$ be given. Then there exist $(\pm u_j, \lambda) \in \Sigma_j^{\pm}$; that is $\Pi(\Sigma_j^{\pm}) = (0, \infty)$.

Proof. Let $\varepsilon_n \to 0$ be any positive sequence. From Lemma 2.2 and Proposition 3.2 with $\lambda_n \equiv \lambda$, there is a sequence u_n of C^2 solutions of (4) which is C^0 -bounded and bounded away from zero in C^0 . Since Ku_n is therefore C^2 -bounded we may pass to a subsequence if necessary and assume that there is a $z \in C^1$ such that $Ku_n \to z$ in C^1 . Hence, it follows that $\varepsilon_n u_n + g(u_n) \to \lambda z$ in C^1 , from where $\varepsilon_n u_n \to 0$ in C^0 , so that $g(u_n) \to \lambda z$ in C^0 . Consequently, $u_n \to g^{-1}(\lambda z) =: u$ in C^0 . Therefore,

$$||g(u) - \lambda Ku|| = ||(g(u) - g(u_n)) + (g(u_n) - \lambda Ku_n) + (\lambda Ku_n - \lambda Ku)||$$

$$\leq ||g(u) - g(u_n)|| + \varepsilon_n ||u_n|| + \lambda ||K|| ||u_n - u|| \to 0.$$

Hence u is a solution of (3). Since z is a C^1 -limit of functions with exactly j transverse zeros we have $\zeta(z) = j$, whence $\zeta(u) = \zeta(g(u)) = \zeta(\lambda z) = j$.

3.2. Sequential and continuum bifurcations. We may now establish the existence of an unbounded interval of sequential bifurcation points.

Theorem 3.4. For each $\lambda > 0$ there exists a sequence $(u_j, \lambda) \in \Sigma$ such that $\zeta(u_j) = j$ and $u_j \to 0$ in C^0 as $j \to \infty$. In particular, every $\lambda \ge 0$ is a sequential bifurcation point for (3).

Proof. Clearly, for each fixed $\lambda > 0$ there are infinitely many solutions of (3), u_j , parameterised by the number of zeros $j \in \mathbb{N}_0$. Recall that the corresponding zeros of $g(u_j)$ are transverse. We claim that $\lim_{j\to\infty} u_j = 0$ in C^0 . Using the bound $||u_j|| \leq M(\lambda)$ from Lemma 2.2, we may assume (on passing to a subsequence) that there is a $z \in C^1$ such that $Ku_j \to z$ in C^1 , so that $g(u_j) \to \lambda z$ in C^1 and therefore $u_j \to g^{-1}(\lambda z)$ in C^0 . If $u := g^{-1}(\lambda z)$ then u is a solution of (3). Since $\zeta(g(u_j)) = j$, g(u) cannot have finitely many zeros in Ω . Hence by Theorem 2.4 g(u) = 0, from where z = 0. Hence $g(u_j) \to 0$ in C^1 and therefore $u_j \to 0$ in C^0 .

In turn, this implies that $\lambda = 0$ is a sequential bifurcation point, simply by setting $\lambda_n = 1/n$ and choosing any $(\overline{u}_n, \lambda_n) \in \Sigma$ with $\|\overline{u}_n\| \leq 1/n$.

Next we examine the question of which $\lambda \geq 0$ are continuum bifurcation points.

Lemma 3.5. If $C \subset \Sigma$ is connected and $(u, \lambda), (u', \lambda') \in C$, then $\zeta(u) = \zeta(u')$.

Proof. Let $(u, \lambda) \in \mathcal{C}$ and suppose that $(u_n, \lambda_n) \in \mathcal{C}$ satisfies $(u_n, \lambda_n) \to (u, \lambda)$ as $n \to \infty$. Using $g(u_n) \equiv \lambda K u_n$ we find that $g(u_n) \to g(u)$ in C^1 and because g(u) has finitely many transverse zeros, $\zeta(u_n) = \zeta(g(u_n)) = \zeta(g(u)) = \zeta(u)$ for all n sufficiently large. This shows that $\zeta(\cdot)$ is an integer-valued continuous function on \mathcal{C} and is therefore constant on \mathcal{C} .

Corollary 3.6. For all $\lambda > 0$, λ is not a continuum bifurcation point.

Proof. If $\lambda > 0$ is a continuum bifurcation point then there exists a connected set $\mathcal{C} \subset \Sigma$ and a sequence $(u_n, \lambda_n) \in \mathcal{C}$ such that $(u_n, \lambda_n) \to (0, \lambda)$ in E. By Lemma 3.5 there exists a $j \in \mathbb{N}_0$ such that $(u_n, \lambda_n) \in \Sigma_j$ for all n. Passing to a subsequence if necessary, we may assume without loss of generality that $(u_n, \lambda_n) \in \Sigma_j^+$ for all n. By Proposition 3.2 with $\varepsilon_n \equiv 0$ it follows that $\lambda = 0$, a contradiction.

Theorem 3.7. $\lambda = 0$ is a continuum bifurcation point for (3).

Proof. For each $\lambda > 0$ there is a unique $(u^+, \lambda) \in \Sigma_0^+$ by Theorem 3.3 and Lemma 3.1. We prove that the map $\lambda \mapsto u^+(\lambda)$ (with $u^+(0) = 0$) from $[0, \infty) \to C^0$ is continuous.

Fix $\lambda \geq 0$ and let $\lambda_n > 0$ be any sequence satisfying $\lambda_n \to \lambda$ as $n \to \infty$. Let $u_n^+ := u^+(\lambda_n)$. Suppose that $u^+(\cdot)$ is not continuous at λ , then there is a $\delta > 0$ such that $||u_n^+ - u^+(\lambda)|| \geq \delta$ for all n. By Lemma 2.2, u_n^+ is bounded in C^0 . From $u_n^+ = \lambda_n K g^{-1}(u_n^+)$ and the compactness of K, there exists a convergent subsequence, say $u_{n_j}^+ \to u^*$ in C^0 . Hence u^* is a solution of $Lu^* = \lambda g^{-1}(u^*)$. By Proposition 3.2, if $\lambda > 0$ then $u^* = u^+(\lambda)$ while if $\lambda = 0$ then $u^* = 0$. Either way this contradicts the above δ -bound.

We now utilise a theorem from topological analysis to obtain connectedness results for the sets of non-trivial sign-changing solutions. **Definition 3.8.** Suppose that (Z, d) is a complete metric space and that $\{S_n\}_{n=0}^{\infty}$ is a family of connected subsets of Z. For $S \subset Z$ define $d(z, S) := \inf_{s \in S} d(s, z)$,

$$S_{\inf} := \left\{ z \in Z : \lim_{n \to \infty} d(z, S_n) = 0 \right\},$$

$$S_{\sup} := \left\{ z \in Z : \liminf_{n \to \infty} d(z, S_n) = 0 \right\}.$$

Theorem 3.9. (See [17]). Suppose that $\bigcup_{n=0}^{\infty} S_n$ is relatively compact in Z. If $S_{inf} \neq \emptyset$, then S_{sup} is a non-empty, closed and connected subset of Z.

Theorem 3.10. Let $j \in \mathbb{N}_0$ be given. There exist unbounded, closed and connected sets $C_j^{\pm} \subset \Sigma_j^{\pm} \cup \{(0,0)\}$ such that $(0,0) \in C_j^{\pm}$. In particular, $\Pi\left(C_j^{\pm}\right) = [0,\infty)$.

Proof. Let $\varepsilon_n \to 0$ be any positive sequence. For fixed $\nu > 0$ let $S_n^{+,j}(\nu)$ be the maximal connected component of $C_j^+(\varepsilon_n) \cap (C^0 \times [0, \nu])$ which contains $(u, \lambda) = (0, \epsilon_n \mu_j)$ in its closure, where $C_j(\varepsilon)$ is defined in Theorem 2.3. Note that by Theorem 2.3, $S_n^{+,j}(\nu)$ contains non-trivial elements of the form (u, λ) for all $\lambda \in [\varepsilon_n \mu_j, \nu]$, provided n is sufficiently large and $(0, \varepsilon_n \mu_j) \in \overline{S_n^{+,j}(\nu)}$. By the compactness of $[0, \nu]$ and of the operator $K : C^0 \to C^0$) it follows that $\bigcup_{n=0}^{\infty} S_n^{+,j}(\nu)$ is relatively compact in E. Clearly $(0, 0) \in S_{\inf}^{+,j}(\nu)$ and so $S_{\inf}^{+,j}(\nu)$ is non-empty. Hence by Theorem 3.9 $S_{\sup}^{+,j}(\nu)$ is non-empty, closed and connected in E.

Now, by the construction of solutions in Theorem 3.3 it follows that

$$\{(u_j, \lambda) \in \Sigma_j^+ : \lambda \in (0, \nu]\} \cup \{(0, 0)\} \subset S_{\inf}^{+, j}(\nu) \subset S_{\sup}^{+, j}(\nu).$$

Moreover, if $(u, \lambda) \in S_{\sup}^{+,j}(\nu)$ there exists a sequence $(u_n, \lambda_n) \in S_n^{+,j}(\nu)$ such that $(u_n, \lambda_n) \to (u, \lambda)$ in *E*. Then,

$$\begin{aligned} \|g(u) - \lambda Ku\| &\leq \|g(u) - g(u_n)\| + |\lambda_n - \lambda| \|Ku_n\| \\ &+ \lambda \|K(u_n - u)\| + \varepsilon_n \|u_n\| \to 0, \end{aligned}$$

so that (u, λ) is a solution of (3). By Proposition 3.2 and Theorem 2.4 either $(u, \lambda) = (0, 0)$ or $(u, \lambda) \in \Sigma_i^+$ for some $j \in \mathbb{N}_0$.

Clearly,
$$S_{\sup}^{+,j}(\nu) \subset S_{\sup}^{+,j}(\nu')$$
 if $\nu < \nu'$ and it follows that $\mathcal{C}_j^+ := \bigcup_{\nu > 0} S_{\sup}^{+,j}(\nu)$ has

the stated properties. The result for \mathcal{C}_i^- follows similarly.

Example 1. Consider a semi-linear, degenerate elliptic equation $\Delta \varphi(v) + \lambda f(v) = 0$ with Dirichlet boundary conditions on an annulus $R_1 < |y| < R_2$ in \mathbb{R}^n , [8]. Suppose that φ and f are strictly increasing, odd functions satisfying $\varphi(0) = f(0) = 0$. Setting u = f(v) one obtains $\Delta g(u) + \lambda u = 0$, where $g(u) := \varphi(f^{-1}(u))$. Suppose that φ and f are such that g satisfies G1-G3. Now, radially symmetric solutions satisfy $(r^{n-1}g(u)_r)_r + \lambda r^{n-1}u = 0$, where r = |y|. Setting $x = r^n/n$ then yields the equivalent problem $-(a(x)g(u)_x)_x = \lambda u$ for $x \in (R_1^n/n, R_2^n/n)$, where a(x) := $(nx)^{2(1-1/n)}$, to which the results of this section apply. Such a situation occurs when $\varphi(v) = v|v|^{m-1}$ and $f(v) = v|v|^{p-1}$ for m > p > 0.

4. Applications

4.1. Non-monotone eigenvalue problems. Here we apply our main results to problems where g is only *locally* monotonic near zero. We still obtain infinitely many solution sets in E parameterised by zeros together with an unbounded interval of sequential (but not continuum) bifurcation points.

Lemma 4.1. Let $\delta > 0$ and suppose that $g : [0, \delta] \to [0, \infty)$ is a strictly increasing C^1 function which is C^2 on $(0, \delta]$ with g(0) = g'(0) = 0 and $g''(\delta) > 0$. If $\gamma(u) = g(u)/u$ satisfies $\gamma'(u) \ge 0$ on $(0, \delta]$ then there exists an odd, strictly increasing C^1 extension $\overline{g} : \mathbb{R} \to \mathbb{R}$ such that $g|_{[0,\delta]} = \overline{g}|_{[0,\delta]}$. Moreover, if $\overline{\gamma}(u) := \overline{g}(u)/u$ then $\overline{\gamma}'(u) \ge 0$ for all u > 0 and $\overline{\gamma}(u) \to \infty$ as $|u| \to \infty$.

Proof. Since $u^2\gamma'(u) = ug'(u) - g(u)$ we have $g'(\delta) > 0$. Now define \overline{g} to be the odd extension of the function

$$\begin{cases} g(u) & : \quad 0 \le u \le \delta \\ g(\delta) + (u - \delta)g'(\delta) + \frac{1}{2}(u - \delta)^2 g''(\delta) & : \quad u \ge \delta, \end{cases}$$

and then for $|u| \ge \delta$ we have $u^2 \overline{\gamma}'(u) = \delta^2 \gamma'(\delta) + \frac{1}{2} g''(\delta)(u^2 - \delta^2) \ge 0.$

We can now deduce the following result when g is only *locally* monotonic.

Theorem 4.2. For some $\delta > 0$ suppose that $g : [-\delta, \delta] \to \mathbb{R}$ is a strictly increasing, odd, C^1 function which is C^2 on $[-\delta, \delta] \setminus \{0\}$ and $g(0) = g'(0) = 0, g''(\delta) > 0$. If $\gamma'(u) \ge 0$ on $(0, \delta]$ then there exist closed, connected sets $C_j^{\pm} \subset \Sigma_j^{\pm} \cup \{(0, 0)\}$ such that $(0, 0) \in C_j^{\pm}$. At least one, but possibly both, of the following is true:

- (1) C_j^{\pm} is unbounded,
- (2) there exists $a(u,\lambda) \in \mathcal{C}_j^{\pm}$ such that $||u|| = \delta$.

Furthermore, for each $\lambda > 0$ there exists a sequence $u_j \in \Sigma$ such that $\zeta(u_j) \to \infty$ and $u_j \to 0$ in C^0 as $j \to \infty$. In particular, every $\lambda \ge 0$ is a sequential bifurcation point and $\lambda = 0$ is a continuum bifurcation point for (3).

Proof. Use Lemma 4.1 to replace (3) by $\overline{g}(u) = \lambda K u$ to which Theorems 3.10 and 3.4 apply. The result follows from the fact that solutions of $\overline{g}(u) = \lambda K u$ with $||u|| \leq \delta$ also satisfy (3).

4.2. **Degenerate Diffusion Equations.** Consider a quasi-linear parabolic equations of the form

(11)
$$v_t - (a(x)D(v)_x)_x + b(x)D(v) = \lambda f(v),$$

supplied with Dirichlet boundary conditions and given initial data. Such equations arise naturally in many branches of the physical and biological sciences [5, 14]. Upon setting u = f(v) and defining g(u) = D(F(u)) (see below) one may use Theorem 4.2 to obtain information on the existence of equilibrium solutions of (11) whenever f and D are monotonic near zero. We omit the trivial proof.

Theorem 4.3. Suppose that $D, f \in C^1(\mathbb{R})$ are odd, strictly increasing functions such that D(0) = D'(0) = f(0) = 0 and f'(0) > 0. Let F denote the local C^1 inverse of f near 0. If there exists a $\delta^* > 0$ such that $D \in C^2(0, \delta^*]$ and uF'(u)D'(F(u)) - $D(F(u)) \ge 0$ on $(0, \delta^*]$ then the conclusions of Theorem 4.2 hold for equilibrium solutions of (11) for each $\delta \le \delta^*$ for which $(D(F))''(\delta) > 0$. In particular, the latter conditions hold for all sufficiently small $\delta > 0$ whenever $D, f \in C^3(\mathbb{R}), D''(0) = 0$ and D'''(0) > 0.

Example 2. Theorem 4.3 applies to a degenerate form of the Chafée-Infante problem (see [6])

$$v_t - (v|v|^m)_{xx} = \lambda v(1 - v^2), \qquad m > 0.$$

MULTIPLE BIFURCATIONS

Example 3. Consider the *slow diffusion* problem

 $u_t - (a(x)[\exp(-1/u)]_x)_x = \lambda u$

with Dirichlet boundary conditions, where $g(u) := [\exp(-1/u)]$ denotes the odd extension of $\exp(-1/u)$ for u > 0. Theorem 4.3 applies to the associated steady-state problem. Note however, that the global results of Section 3 do not apply even though g is globally monotonic due to the failure of the coercivity condition G3. Due to the *flat* nature of g at u = 0, the results of [1] do not apply to this equation.

4.3. Boundary-value differential-algebraic equations. We can also use the above results to find steady-states of parabolic systems

$$u_t + Lu = \lambda F(u, v), \qquad u(0, t) = u(1, t) = 0,$$

 $v_t = G(u, v),$

or equivalently, the boundary-value differential-algebraic equation (DAE)

(12)
$$Lu = \lambda F(u, v), \ G(u, v) = 0, \qquad u(0) = u(1) = 0.$$

Problems of this nature are considered in [10], motivated by interactions between diffusive and non-diffusive species. We have the following theorem regarding solutions of (12).

Theorem 4.4. Suppose that F and G are C^r functions with $r \ge 4$ such that F(0,0) = G(0,0) = 0, $G_v(0,0) = G_{vv}(0,0) = 0$, F(-u,-v) = -F(u,v) and G(u,-v) = -G(-u,v). If $G_u F_v G_{vvv} < 0$ at (0,0) then $\lambda = 0$ is a continuum bifurcation point to a branch of positive solutions of (12). There are countably many sets of non-trivial solutions $C_j \subset C^2(\overline{\Omega}) \times C^0(\overline{\Omega}) \times \mathbb{R}$ such that $C_j \cup \{(0,0,0)\}$ is connected and if $(u,v,\lambda) \in C_j$ then u and v have j zeros in Ω . Every $\lambda \in (0,\infty)$ is a sequential bifurcation point, but no element of $(0,\infty)$ is a continuum bifurcation point.

Proof. Apply the implicit function theorem to G(u, v) = 0 and solve this constraint as u = U(v), where U(0) = U'(0) = U''(0) = 0 and $U'''(0) = -G_{vvv}(0,0)/G_u(0,0) \neq 0$. Then (12) is reduced to $LU(v) = \lambda F(U(v), v)$, so now set w = F(U(v), v). This can be solved by the inverse function theorem for v = V(w) such that $V(0) = 0, V'(0) = 1/F_v(0,0)$ and $V''(0) = -F_{vv}(0,0)/F_v(0,0)^3$. Now, (12) is locally equivalent to $LU(V(w)) = \lambda w$, so we set q(w) = U(V(w)).

Now, the hypotheses on F and G ensure that U and V are odd functions, so that g(w) is also odd, now set $\gamma(w) = g(w)/w$. Differentiating, we see that $g(w) = \xi w^3 + o(w^3)$ where $\xi = -G_{vvv}G_uF_v/(G_u^2F_v^4) > 0$ and where each of these derivatives is evaluated at (u, v) = (0, 0). Hence there is a $\delta > 0$ such that $g(w) > 0, \gamma'(w) > 0$ on $(0, \delta]$ and $g''(\delta) > 0$. One can now apply Theorem 4.2 to $Lg(w) = \lambda w$.

Example 4. The hypotheses of Theorem 4.4 are satisfied by the steady-state problem for the reaction-diffusion system

$$u_t - u_{xx} = \lambda \sin v, \quad u(0,t) = u(1,t) = 0,$$

 $v_t = u + u^2 v - v^3.$

Remark 2. Fully non-linear elliptic equations of the form

(13) $Lu = f(u, Lu), \quad u(0) = u(1) = 0,$

can be written as a boundary-value DAE by setting v = Lu, F(u, v) = v and G(u, v) = f(u, v) - v. Problems of this type are studied, for instance, in [16]. A

solution of (12) when $\lambda = 1$ provides a solution of (13) and these can be obtained using Theorem 4.4 with suitable restrictions on f.

References

- A. Ambrosetti, J. Garcia-Azorero, and I. Peral, Quasilinear equations with a multiple bifurcation, Differential and Integral Equations 10 (1997), no. 1, 37–50.
- [2] D. Aronson and L.A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Differential Equations 39 (1981), 378–412.
- [3] H. Berestycki, On some nonlinear Sturm-Louiville problems, J. Differential Equations. 26 (1977), 375–390.
- [4] H. Berestycki and M.J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations 134 (1997), 1–25.
- [5] K.P. Hadeler, Free boundary problems in biology, in Free Boundary Problems: Theory and Applications Vol.II, eds. A. Fasano and M. Primicerio, Pitman Advanced Publishing Program, Pitman, New York, 1983.
- [6] D. Henry, Geometrical theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, New York, 1981.
- [7] T. Kato, Perturbation theory for linear operators, vol. Corrected 2nd Edition, Springer-Verlag, New York, 1980.
- [8] M.K. Kwong and L. Zhang, Uniqueness of the positive solution of $\Delta u + f(u) = 0$ in an annulus, Differential Integral Equations 4 (1991), 583–596.
- [9] R. Laister and R. E. Beardmore, Transversality and separation of zeros in second order differential equations, Proc. AMS., To appear.
- [10] M. A. Lewis, Spatial coupling of plant and herbivore dynamics: the contribution of herbivore dispersal to transient and persistant "waves" of damage, Theoretical Population Biology 45 (1994), 277–312.
- [11] P.L. Lions, Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations, J. Differential Equations 53 (1984), no. 3, 362–386.
- [12] M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, N.J., (1967).
- [13] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.
- [14] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, and A.P. Mikhailov, *Blow-up in quasi-linear parabolic equations*, de Gruyter Expositions in Mathematics, 19, Walter de Gruyter, Berlin, 1995.
- [15] C.A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. 45 (1982), 169–192.
- [16] S. C. Welsh, A priori bounds and nodal properties for periodic solutions to a class of ordinary differential equations, J. Math. Anal. Appns. 171 (1992), 395–406.
- [17] G. T. Whyburn, Topological analysis, Princeton University Press, 1964.

DEPT. OF MATHEMATICS, IMPERIAL COLLEGE, SOUTH KENSINGTON, LONDON, SW7 2AZ. *E-mail address*: r.beardmore@ic.ac.uk

DEPT. OF MATHEMATICS, UWE, FRENCHAY CAMPUS, BRISTOL. *E-mail address*: robert.laister@uwe.ac.uk