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SEQUENTIAL AND CONTINUUM BIFURCATIONS IN
DEGENERATE ELLIPTIC EQUATIONS

R.E. BEARDMORE AND R. LAISTER

ABSTRACT. We examine the bifurcations to positive and sign-changing solu-
tions of degenerate elliptic equations. In the problems we study, which do not
represent Fredholm operators, we show that there is a critical parameter value
at which an infinity of bifurcations occur from the trivial solution. Moreover,
a bifurcation occurs at each point in some unbounded interval in parameter
space. We apply our results to non-monotone eigenvalue problems, degenerate
semi-linear elliptic equations, boundary value differential-algebraic equations
and fully non-linear elliptic equations.

1. INTRODUCTION

In this paper we consider the non-linear, degenerate eigenvalue problem

(1) Lg(u) = Au, x € Q:=(0,1),
(2) u=0, x € 0Q,
where Lu = —(a(z)u,), + b(z)u and the coefficients a,b € C*(Q) satisfy a > 0

and b > 0 on . Consequently L is uniformly elliptic, but the non-linear function
g € C1(R) is assumed to degenerate at zero with g(0) = ¢’(0) = 0.

Let us define y(u) = g(u)/u with v(0) = 0 and begin with the statement of our
assumptions on g:

G1. g is an odd, strictly increasing function on R,

G2. « is strictly increasing for u > 0,

G3. v(u) — o0 as |u| — oo.
These are all satisfied if, for instance, g(u) = u|u|™, where m > 0.

Definition 1.1. Let X,Y be Banach spaces, F' : X Xx R — Y be continuous and
satisfy F'(0,\) =0 for all A € R. Let ¥ C X x R denote the set of all non-trivial
(u # 0) solutions of F(u,A) = 0. We say that Ag is a sequential bifurcation point
from the trivial solution for F(u,\) = 0 if there is a sequence (u,, \,) € X such
that (un,An) — (0,X) in X X R as n — oo. If such a sequence (up,A,) lies in
some connected set C C X, then \g is said to be a continuum bifurcation point.

We prove the following for (1-2). To each A > 0 there is a sequence u,(\) €
C°(Q2) of solutions of (1-2) such that (i) the number of zeros of u,(A) in Q is n,
(ii) un(A) — 0 in C°(Q) as n — oo, (iii) un(A) — 0in CO(Q) as A — 0, (iv) every
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A > 0 is a sequential bifurcation point but not a continuum bifurcation point and
(v) A =0is a continuum bifurcation point.

We remark that the theory in [1] could be used to obtain local versions of some of
the results proved here. However, our results are complementary to [1] in that they
are global and impose no conditions on the growth of g~! near zero. Furthermore,
we establish the existence of an unbounded interval of sequential bifurcation points.
For the special case g(u) = u|u|™, we note that a global branch of positive solutions
was shown to exist in [2] in a study of flows in porous media.

The remainder of the paper is structured as follows. Section 2 introduces some
notation and preliminary results. The main results of the paper appear in Section 3.
Finally, in Section 4 we apply our results to non-monotone degenerate eigenvalue
problems, degenerate semi-linear elliptic equations, boundary value differential-
algebraic equations and fully non-linear elliptic equations.

2. PRELIMINARIES

Throughout we write U for the closure of U in a given metric space. We denote by
C*(Q) the space of k-times differentiable functions on €, henceforth written simply
as C* when there is no ambiguity. We note here that the imbedding C* < C7 is
compact if £ > r. For any u € C° with finitely many zeros we shall denote the
number of zeros of u in Q by ((u).

It is well known that L : C? — C° together with the Dirichlet boundary condition
(2) has positive, simple eigenvalues henceforth denoted by p; for j € Ny := NU
{0}, where the principal eigenvalue 1o has an associated positive eigenfunction ¢g.
Furthermore, L has a continuous inverse K : C° — (2 which induces a compact
linear map K : C° — CV.

The problem of finding continuous solutions of (1-2) with g(u(-)) € C? is there-
fore equivalent to

(3) F(u,\) :=g(u) — AKu =0, ue CY,

where g : €% — (CY is the C' Nemytskii operator for g defined by (g(u))(z) =
g(u(z)). Our approach to solving (3) will be based on the regularized problem

(4) F(u,\;e) :==g(u) + (eI — AK)u =0, e >0.
We define some solution sets. Throughout E := C° x R is endowed with the
norm ||(u, A)||z = ||ul + ||, where || - || denotes the sup-norm on C°. The symbol

(-,+) denotes the usual L? inner product. For ¢ > 0, ¥(¢) C E will denote the set
of non-trivial solutions (u, \) of F(u,X\;e) =0 in E. For j € Ny we write X, () for
the subset of 3(¢) consisting of functions with j zeros in Q. By Z; (e) (X (e)) we
denote the subset of 3;(¢) of functions u such that g(u),(0) > 0 (g(u)»(0) < 0). For
notational convenience we will simply write ¥ instead of X(0) and Z;-t for Eji(O).
We note here that since ¢ is odd, (u,\) € X(e) if and only if (—u,\) € X(e).
Consequently 7 (¢) = —Zj (e).

Remark 1. The map F : C° x R — C? is C' and has partial Fréchet derivative
dyF(u,\)[h] = ¢'(u)h — AKh which is not a Fredholm mapping at v = 0 since
¢'(0) = 0. Consequently, one cannot use reduction methods based on the implicit
function theorem to study bifurcations of (3) from the trivial solution. See also
[3, 4, 15]. Moreover, d,,F'(0,\) = —AK which, for A # 0, has point spectrum and
zero in the essential spectrum, but when A = 0 the spectrum consists only of zero.
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Lemma 2.1. Fize > 0. If (u,\) € ¥(¢), then A > 0; that is $(g) C C° x (0,00).

Proof. Multiplying the relation F'(u, A\;¢) = 0 by u and integrating over ) gives,
after setting v = Ku,

/ eu? +ug(u) dr =\ | uKudr =\ | vLv da.
Q Q Q

Noting that ug(u) > 0 and (v, Lv) > 0, the result follows. O

Lemma 2.2. Fore € [0, 1] the following a priori bound applies: to each £ > 0 there
is an M(€) > 0, independent of €, such that if A € [0,£] then ||u|| < M(¢) whenever
(u, \) € X(e).

Proof. Suppose that eu + g(u) = AKu, where 0 <e < 1,0 < A < /¢ and let 29 € Q
satisfy ||u|| = |u(zo)|. Then

[lg(u(zo))| = | = eulzo)| < lg(u(zo)) + culzo)| < A K|[lu(zo)];

where ||K| denotes the operator norm of K € BL(C?). We therefore obtain
v(JJul]) < A|K|| + ¢ < 4| K| + 1. Noting that | : [0,00) — [0,00) is surjective
(by G3) and non-decreasing (by G2), the result follows on defining M (¢) to be any
positive solution of (M) = (|| K|| + 1. O

Since e+¢'(u) > e > 0 for all u € R and £ > 0, the algebraic equation cu+g(u) =
v has a unique solution u = G(v;¢), where G(-;¢) € C*(R). When ¢ = 0 we simply
have G(v;0) = ¢g~!(v), which is continuous. Moreover, G : R x [0,00) — R is
continuous. We shall use this notation throughout and in the following theorem,
which is a consequence of global bifurcation theory.

Theorem 2.3. For each ¢ > 0 and j € Ny, there are open, connected and un-
bounded sets Cf(a) C E;t(a) such that (0,ep;) € Cji(a). Furthermore, for every
A > ep; there exist (fuje,A) € Cf(s), so that (gp;,00) C H(C;—L(s)), where
II: E — R is the natural projection.

Proof. For each fixed € > 0, apply global bifurcation results [13] to v = AKG(v;¢)
and use the nodal properties of solutions to regular elliptic equations to demonstrate
the existence of disjoint, unbounded continua C’;E (&) with the stated properties. The
existence of (fu; ¢, A) for A > epu; follows from the unboundedness of C’fE (e) in E,
Lemma 2.1 and Lemma 2.2. ([

If w is a non-trivial solution of (4) with ¢ > 0 then the zeros of the function
eu + g(u) are transverse. The following result shows that transversality persists
when € = 0.

Theorem 2.4. (See [9, Theorem 2.2]). Suppose that f € C°(R) is strictly increas-
ing and f(0) = 0. Ifu € C%*(Q) is a solution of the initial value problem Lu = f(u)
on Q with u(a) = u,(a) = 0 for some o € Q, then u = 0 on Q. Furthermore, u
has a finite number of zeros in .

Corollary 2.5. If (u,\) € X then ((u) = ((g(u)) < oo and all zeros of g(u) in Q
are transverse. In particular, ¥ = U372, (EJ+ U E;)

Proof. If (u,\) € ¥ and v := g(u), then Lv = A\g~!(v). The result follows from
Lemma 2.1 and Theorem 2.4 with f(v) = Ag~!(v). O
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3. THE MAIN RESULTS

In this section we prove the main results on the existence of non-trivial solutions
of (3) and the nature of bifurcation points.

3.1. Existence of non-trivial solutions. We begin with an existence and unique-
ness result for elliptic equations.

Lemma 3.1. Suppose Au := —(a(z)ug), + B(x)u, where a and 8 satisfy the same
assumptions as a and b. Let A > 0 and € > 0 be fized. If there exists a positive
subsolution ¥ of the elliptic problem

(5) Av = AG(v;e), v(0) =v(1) =0,

then there exists a unique non-trivial, non-negative solution v of (5). Moreover,
v > .

Proof. By assumption G3, lim, ., G(v;&)/v = 0 for fixed £ > 0. In particular this
implies that lim sup,,_, . AG(v;¢e)/v < kg, where xg denotes the principal eigenvalue
of A. Tt is well known [6, 11] that non-negative solutions of the associated parabolic
problem

(6) vy = —Av + AG(v;e), v(0,t) =v(1,t) =0

(with continuous initial condition v(z,0) = vg(x)) have non-empty omega-limit sets
w(vg) contained in the equilibrium set, comprising of solutions of (5). In particular,
since 9 is also a subsolution of (6), there exists a solution v of (5) such that v > .
It therefore remains only to establish the uniqueness of v.

Suppose w is any non-trivial, non-negative solution of (5). By Gl and the

maximum principle, w > 0 in 2. Now, fol vAw — wAv dxr = 0 so that
1 1
G(w; G(v;
)\/ vG(w;e) —wG(vie) dx =/ Avw ( (wie) _ (U’S)) dz = 0.
0 0 w v

By G2, s — G(s;¢)/s is decreasing for all s > 0. Hence if v and w are ordered in
C°, then v = w and v is unique. If v and w are not ordered in C° then, for any
vo > max{v,w}, w(vg) must contain a solution z of (5) such that z > max{v,w},
whence z # v and z # w. Hence z and v are ordered in C° and the above argument
(with w replaced by z) yields z = v, a contradiction. |

The following result is crucial, showing that non-trivial j-zero solutions of the
regularized problem (4) cannot accumulate on the trivial branch as e — 0, except
possibly at the origin.

Proposition 3.2. Let j € Ng be fixed and 0 < ¢, — 0 as n — oo. If (un, A\,) €
Zj (en) satisfies (un, A\n) — (0,A) in E as n — oo, then A = 0. An analogous result
holds for ¥ (en).

Proof. Necessarily A > 0 by Lemma 2.1, so suppose that A > 0. We first consider
the case j = 0 (positive solutions). Fix A, € (0,A) and choose ng such that
en < min{ug, (Ax/po)} and A\, > A, for all n > ng. By the degeneracy of g there is
a U > 0 (independent of n) such that g(u) + e,u < (A/po)u for all uw € [0,U] and
n > ng. Hence there is a V > 0 (independent of n) such that G(v;e,) > (o/A)v
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for all v € [0, V] and n > ng. Let us normalise the principal eigenfunction of L, ¢,
so that ||¢o|| = V. Since G(¢o,en) > (ft0/ ) o it follows that

7L¢0 + AnG(d)Oa En) > 7L¢0 + /\n(ﬂo/)\*)¢0 >0
and so ¢ is a subsolution of

(7) Lv = X\, G(v;ep), v(0) =v(1) =0.
Hence by Lemma 3.1 there exists a unique positive solution w,, of (7) and w,, > ¢q.
Now, v, = epupn + g(uy,) is also a positive solution of (7) and so by uniqueness

v, = w,. But since v, = A\, Ku, and u, — 0in C° as n — oo it follows that
v, — 0 in C2. In particular, by Hopf’s boundary point lemma [12] applied to ¢q,
there exists an n; > ng such that v, < ¢ in Q for all n > ny, a contradiction.
This proves the result for j = 0. The result for X7 (en) is a trivial consequence of
the symmetry of g.

Now suppose that j > 1. If £ (i = 0,...,5 + 1) denote the zeros of u, in  in
increasing order, let 6!, = £iH1 — ¢! (i =0, ..., 7). Then v, = e,un +g(u,) (suitably
restricted) is a constant sign solution of

(8) Lv=MG(vien), (&) =v(&H) =0.

Since 23205; = 1, we can assume for some i that 6’ (=: 6,) remains uniformly
bounded away from zero. Passing to a subsequence if necessary we may assume
that §,, — deo € (0,1] as n — oco. Now rescale the spatial variable z in (8) according
to z — (x—£iT1) /6, and, without loss of generality by the symmetry of g, we obtain
a sequence v,, of positive solutions of

(9) L,v = A\G(v;64), v(0) =v(1) =0,

with v, — 01in C?, where L,v := —4,,%(a(x)vy), + b(z)v. If we denote by {ud, ¢n}
the principal eigenpair of the operator L,, then spectral perturbation results for
simple eigenvalues [7] show that pf — ug°, the principal eigenvalue of Lo, and
oF — ¢ in C?, where ¢&° is the corresponding principal eigenfunction.

Note that there is a V' > 0 (independent of n) and an my > mng such that
G(v;en) > (pF + 1)v/A, for all v € [0, V] and n > na. If ¢f is normalised so that
|61l =V then

(10) —=Lndg +XnG(556n) 2 =Lndi +An(pg” +1)05/Ae = (5" +1 = p15)d5 > 0,

for all n > ny and so ¢f is a positive subsolution of (9) for all such n. An identical
argument to the j = 0 case then leads to a contradiction as before. (I

We can now prove the following existence result for (3).

Theorem 3.3. Let A > 0 and j € Ny be given. Then there exist (uj, \) € E;t;
that is I1 (E]i) = (0,00).

Proof. Let ¢,, — 0 be any positive sequence. From Lemma 2.2 and Proposition 3.2
with A, = A, there is a sequence u,, of C? solutions of (4) which is C°-bounded and
bounded away from zero in C°. Since Ku,, is therefore C2-bounded we may pass to
a subsequence if necessary and assume that there is a z € C! such that Ku, — z
in C!. Hence, it follows that e,u, + g(u,) — Az in C1, from where &,u,, — 0 in
C°, so that g(u,) — Az in C°. Consequently, u,, — g~ 1(\z) =: v in C°. Therefore,

lg(u) = AKull = [[(g(u) = g(un)) + (9(un) = AKun) + (AKup — AKu)|
< llg(w) = g(un)ll + enllunll + MK un = uf — 0.
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Hence u is a solution of (3). Since z is a C'-limit of functions with exactly j
transverse zeros we have ((z) = j, whence ((u) = ((g(u)) = ((Az) = j. O

3.2. Sequential and continuum bifurcations. We may now establish the exis-
tence of an unbounded interval of sequential bifurcation points.

Theorem 3.4. For each A > 0 there exists a sequence (u;j,\) € ¥ such that
C(uj) =j and uj — 0 in C° as j — oo. In particular, every A > 0 is a sequential
bifurcation point for (3).

Proof. Clearly, for each fixed A > 0 there are infinitely many solutions of (3), u;,
parameterised by the number of zeros j € Ny. Recall that the corresponding zeros
of g(u;) are transverse. We claim that lim; .o, u; = 0 in C°. Using the bound
[luj]| < M(A) from Lemma 2.2, we may assume (on passing to a subsequence) that
there is a z € C! such that Ku; — z in C', so that g(u;) — Az in C' and therefore
u; — g~ (Az) in CO. If u := g~!(A\z) then u is a solution of (3). Since ¢(g(u;)) = j,
g(u) cannot have finitely many zeros in 2. Hence by Theorem 2.4 g(u) = 0, from
where z = 0. Hence g(u;) — 0 in C* and therefore u; — 0 in C°.

In turn, this implies that A = 0 is a sequential bifurcation point, simply by
setting A, = 1/n and choosing any (@, A\,) € X with ||u,| < 1/n. O

Next we examine the question of which A > 0 are continuum bifurcation points.
Lemma 3.5. If C C ¥ is connected and (u, A), (u', N') € C, then ((u) = ¢(u').

Proof. Let (u,A) € C and suppose that (un,A,) € C satisfies (upn, An) — (u,A) as
n — oo. Using g(u,) = AKu, we find that g(u,) — g(u) in C* and because g(u)
has finitely many transverse zeros, ((u,) = ((9(u,)) = ((g(w)) = {(u) for all n
sufficiently large. This shows that {(+) is an integer-valued continuous function on
C and is therefore constant on C. ]

Corollary 3.6. For all A > 0, X is not a continuum bifurcation point.

Proof. If A > 0 is a continuum bifurcation point then there exists a connected set
C C ¥ and a sequence (U, Ap) € C such that (un, A,) — (0, ) in E. By Lemma 3.5
there exists a j € Ny such that (u,, \,) € Y; for all n. Passing to a subsequence if
necessary, we may assume without loss of generality that (u,,\,) € E;‘ for all n.
By Proposition 3.2 with €,, = 0 it follows that A = 0, a contradiction. [l

Theorem 3.7. A =0 is a continuum bifurcation point for (3).

Proof. For each A > 0 there is a unique (u™,\) € E(J{ by Theorem 3.3 and
Lemma 3.1. We prove that the map A — u*(\) (with u™(0) = 0) from [0, 00) — C°
is continuous.

Fix A > 0 and let A, > 0 be any sequence satisfying A\, — A as n — oo.
Let uw;t := u™()\,). Suppose that u™(-) is not continuous at A, then there is a
§ > 0 such that [|u;} —ut(N\)|| > 6 for all n. By Lemma 2.2, u;} is bounded in
CY. From u} = X\, Kg~1(u;) and the compactness of K, there exists a convergent
subsequence, say u;‘L‘j — u* in CY. Hence u* is a solution of Lu* = A\g~*(u*). By
Proposition 3.2, if A > 0 then u* = u™(\) while if A\ = 0 then «* = 0. Either way
this contradicts the above d-bound. O

We now utilise a theorem from topological analysis to obtain connectedness
results for the sets of non-trivial sign-changing solutions.
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Definition 3.8. Suppose that (Z,d) is a complete metric space and that {S,}22,
is a family of connected subsets of Z. For S C Z define d(z, S) := ing d(s, z),
sE

Sing = {z € Z: lim d(z,S,) = 0} ,

Ssup = {z € Z: 1iJr_1)iOI<1>f d(z,S,) = 0} )

Theorem 3.9. (See [17]). Suppose that U, Sy is relatively compact in Z. If
Sint # 0, then Squp is a non-empty, closed and connected subset of Z.

Theorem 3.10. Let j € Ny be given. There exist unbounded, closed and connected
sets Cji C Zj[ U{(0,0)} such that (0,0) € Cj-[ . In particular, 11 (C]i) = [0, 0).

Proof. Let ¢, — 0 be any positive sequence. For fixed v > 0let S;"7(v) be the max-
imal connected component of C’;‘ (£,)N(C°x [0, v]) which contains (u, A) = (0, €,,45)
in its closure, where C;(¢) is defined in Theorem 2.3. Note that by Theorem 2.3,
S5 (v) contains non-trivial elements of the form (u,\) for all A\ € [e,u;,v], pro-

vided 7 is sufficiently large and (0,e,p;) € Si7(v). By the compactness of [0, V]
and of the operator K : C° — C?) it follows that [ J;—, S/ (v) is relatively compact
in E. Clearly (0,0) € S;7(v) and so S;*7 (v) is non-empty. Hence by Theorem 3.9

S (v) is non-empty, closed and connected in E.

Now, by the construction of solutions in Theorem 3.3 it follows that
{(uj,\) €25 = Ae (0,11} U{(0,0)} € Sii (v) C ST ).

inf sup

Moreover, if (u,\) € SJ(v) there exists a sequence (un, \,) € S, (v) such that

sup

(Un, An) — (u,A) in E. Then,
lg(u) = AKull < [lg(u) = g(un)l| + [An = All[Kun|
+ MK (un = u)|| + enlunll — 0,

so that (u, ) is a solution of (3). By Proposition 3.2 and Theorem 2.4 either
(u,A) = (0,0) or (u, ) € E+ for some j € Ny.

Clearly, S (v) C S‘W( ") if v < v/ and it follows that C+ U SHJ(v) has

sup sup sup
v>0
the stated properties. The result for Cj_ follows similarly. O

Example 1. Consider a semi-linear, degenerate elliptic equation Ap(v)+Af(v) =0
with Dirichlet boundary conditions on an annulus Ry < |y| < Rg in R™, [8]. Suppose
that ¢ and f are strictly increasing, odd functions satisfying ©(0) = f(0) = 0
Setting u = f(v) one obtains Ag(u) + Au = 0, where g(u) := o(f~*(u)). Suppose
that ¢ and f are such that g satisfies G1-G3. Now, radially symmetric solutions
satisfy (r"~lg(u),), + Ar"tu = 0, where r = |y|. Setting z = r"/n then yields
the equivalent problem —(a(z)g(u)y), = Au for z € (R} /n, RY/n), where a(z) :=
(nx)Z(lfl/"), to which the results of this section apply. Such a situation occurs
when p(v) = v|v|™! and f(v) = v|v|P~! for m > p > 0.

4. APPLICATIONS

4.1. Non-monotone eigenvalue problems. Here we apply our main results to
problems where g is only locally monotonic near zero. We still obtain infinitely many
solution sets in F parameterised by zeros together with an unbounded interval of
sequential (but not continuum) bifurcation points.
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Lemma 4.1. Let § > 0 and suppose that g : [0,0] — [0,00) is a strictly increasing
C*t function which is C* on (0,6] with g(0) = ¢’'(0) = 0 and ¢"(8) > 0. If y(u) =
g(u)/u satisfies 7' (u) > 0 on (0,0] then there exists an odd, strictly increasing C!
extension § : R — R such that g|[0’5] = §|[0,5]' Moreover, if ¥(u) := g(u)/u then
' (u) >0 for all u > 0 and J(u) — oo as |u| — oo.

Proof. Since u?v'(u) = ug'(u) — g(u) we have ¢’(§) > 0. Now define g to be the
odd extension of the function

g(u) 0<u<d
9(0) + (u—0)g'(8) + 5(u — 8)*g" (9) u >4,
and then for |u| > § we have u?¥'(u) = 62v/(6) + 14" (6)(u? — 62) > 0. O

We can now deduce the following result when g is only locally monotonic.

Theorem 4.2. For some 6 > 0 suppose that g : [—9,] — R is a strictly increasing,
odd, Ct function which is C* on [—6,6]\{0} and g(0) = ¢'(0) = 0,¢"(8) > 0. If
7' (u) > 0 on (0,0] then there exist closed, connected sets Cf C Z;t U {(0,0)} such
that (0,0) € C]i. At least one, but possibly both, of the following is true:

(1) Cji is unbounded,
(2) there exists a (u, \) € ij-[ such that ||u|| = 6.

Furthermore, for each X\ > 0 there exists a sequence uj € ¥ such that ((u;) — oo
and uj — 0 in C° as j — oco. In particular, every X > 0 is a sequential bifurcation
point and A = 0 is a continuum bifurcation point for (3).

Proof. Use Lemma 4.1 to replace (3) by g(u) = AKu to which Theorems 3.10 and
3.4 apply. The result follows from the fact that solutions of g(u) = AKu with
|lu|l < § also satisfy (3). O

4.2. Degenerate Diffusion Equations. Consider a quasi-linear parabolic equa-
tions of the form

(11) vi = (a(@)D(v)e)s + b(x)D(v) = Af(v),

supplied with Dirichlet boundary conditions and given initial data. Such equations
arise naturally in many branches of the physical and biological sciences [5, 14].
Upon setting u = f(v) and defining g(u) = D(F(u)) (see below) one may use
Theorem 4.2 to obtain information on the existence of equilibrium solutions of (11)
whenever f and D are monotonic near zero. We omit the trivial proof.

Theorem 4.3. Suppose that D, f € C*(R) are odd, strictly increasing functions
such that D(0) = D'(0) = £(0) = 0 and f'(0) > 0. Let F denote the local C* inverse
of f mear 0. If there exists a 6* > 0 such that D € C?%(0,6*] and uF'(u)D'(F(u)) —
D(F(u)) > 0 on (0,6*] then the conclusions of Theorem 4.2 hold for equilibrium
solutions of (11) for each § < 6* for which (D(F))"(0) > 0. In particular, the latter
conditions hold for all sufficiently small § > 0 whenever D, f € C3*(R), D"(0) =0
and D"'(0) > 0.

Example 2. Theorem 4.3 applies to a degenerate form of the Chafée-Infante prob-
lem (see [6])

v — (V]v[™)ge = M(1 —0?), m > 0.



MULTIPLE BIFURCATIONS 9

Example 3. Consider the slow diffusion problem

uy — (a(x)[exp (—1/u)]z)z = Au
with Dirichlet boundary conditions, where g(u) := [exp (—1/u)] denotes the odd
extension of exp (—1/u) for u > 0. Theorem 4.3 applies to the associated steady-
state problem. Note however, that the global results of Section 3 do not apply even

though g is globally monotonic due to the failure of the coercivity condition G3.
Due to the flat nature of g at u = 0, the results of [1] do not apply to this equation.

4.3. Boundary-value differential-algebraic equations. We can also use the
above results to find steady-states of parabolic systems

ur+Lu = AF(u,v), u(0,t) = u(1,t) =0,
vy = G(u,v),
or equivalently, the boundary-value differential-algebraic equation (DAE)
(12) Lu = AF(u,v), G(u,v) =0, u(0) =u(l) =0.

Problems of this nature are considered in [10], motivated by interactions between
diffusive and non-diffusive species. We have the following theorem regarding solu-
tions of (12).

Theorem 4.4. Suppose that F' and G are C" functions with r > 4 such that
F(0,0) = G(0,0) = 0, G,(0,0) = G,,(0,0) = 0, F(—u,—v) = —F(u,v) and
G(u,—v) = =G(—u,v). If GuF,Gyyy < 0 at (0,0) then A = 0 is a continuum
bifurcation point to a branch of positive solutions of (12). There are countably
many sets of non-trivial solutions C; C C?(2) x C°(Q) x R such that C;U{(0,0,0)}
is connected and if (u,v,\) € C; then u and v have j zeros in Q2. Every X € (0,00)
is a sequential bifurcation point, but no element of (0,00) is a continuum bifurcation
point.

Proof. Apply the implicit function theorem to G(u,v) = 0 and solve this constraint
asu = U(v), where U(0) = U’(0) = U"(0) = 0 and U""(0) = —G44»(0,0)/G,(0,0) #
0. Then (12) is reduced to LU (v) = AF(U(v),v), so now set w = F(U(v),v).
This can be solved by the inverse function theorem for v = V(w) such that
V(0) = 0,V/(0) = 1/F,(0,0) and V"(0) = —F,,(0,0)/F,(0,0)%. Now, (12) is
locally equivalent to LU (V(w)) = Aw, so we set g(w) = U(V (w)).

Now, the hypotheses on F' and G ensure that U and V are odd functions, so
that g(w) is also odd, now set y(w) = g(w)/w. Differentiating, we see that g(w) =
Ew3+o(w3) where £ = —Gyyy G Fy /(G2 F) > 0 and where each of these derivatives
is evaluated at (u,v) = (0,0). Hence there is a 6 > 0 such that g(w) > 0,7'(w) > 0
on (0,6] and ¢g”() > 0. One can now apply Theorem 4.2 to Lg(w) = Aw. O

Example 4. The hypotheses of Theorem 4.4 are satisfied by the steady-state prob-
lem for the reaction-diffusion system

Uy —Uge = Asinv, u(0,t) =wu(l,t) =0,

vy = u+u2v7v3.

Remark 2. Fully non-linear elliptic equations of the form
(13) Lu= f(u,Lu),  u(0)=u(l)=0,
can be written as a boundary-value DAE by setting v = Lu, F(u,v) = v and
G(u,v) = f(u,v) — v. Problems of this type are studied, for instance, in [16]. A
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solution of (12) when A = 1 provides a solution of (13) and these can be obtained
using Theorem 4.4 with suitable restrictions on f.
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