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SEQUENTIAL AND CONTINUUM BIFURCATIONS IN
DEGENERATE ELLIPTIC EQUATIONS

R.E. BEARDMORE AND R. LAISTER

Abstract. We examine the bifurcations to positive and sign-changing solu-
tions of degenerate elliptic equations. In the problems we study, which do not
represent Fredholm operators, we show that there is a critical parameter value
at which an infinity of bifurcations occur from the trivial solution. Moreover,
a bifurcation occurs at each point in some unbounded interval in parameter
space. We apply our results to non-monotone eigenvalue problems, degenerate
semi-linear elliptic equations, boundary value differential-algebraic equations
and fully non-linear elliptic equations.

1. Introduction

In this paper we consider the non-linear, degenerate eigenvalue problem

Lg(u) = λu, x ∈ Ω := (0, 1),(1)
u = 0, x ∈ ∂Ω,(2)

where Lu := −(a(x)ux)x + b(x)u and the coefficients a, b ∈ C1(Ω) satisfy a > 0
and b ≥ 0 on Ω. Consequently L is uniformly elliptic, but the non-linear function
g ∈ C1(R) is assumed to degenerate at zero with g(0) = g′(0) = 0.

Let us define γ(u) = g(u)/u with γ(0) = 0 and begin with the statement of our
assumptions on g:

G1. g is an odd, strictly increasing function on R,
G2. γ is strictly increasing for u > 0,
G3. γ(u) →∞ as |u| → ∞.

These are all satisfied if, for instance, g(u) = u|u|m, where m > 0.

Definition 1.1. Let X, Y be Banach spaces, F : X × R → Y be continuous and
satisfy F (0, λ) = 0 for all λ ∈ R. Let Σ ⊂ X × R denote the set of all non-trivial
(u 6= 0) solutions of F (u, λ) = 0. We say that λ0 is a sequential bifurcation point
from the trivial solution for F (u, λ) = 0 if there is a sequence (un, λn) ∈ Σ such
that (un, λn) → (0, λ0) in X × R as n → ∞. If such a sequence (un, λn) lies in
some connected set C ⊂ Σ, then λ0 is said to be a continuum bifurcation point.

We prove the following for (1-2). To each λ > 0 there is a sequence un(λ) ∈
C0(Ω) of solutions of (1-2) such that (i) the number of zeros of un(λ) in Ω is n,
(ii) un(λ) → 0 in C0(Ω) as n → ∞, (iii) un(λ) → 0 in C0(Ω) as λ → 0, (iv) every

Received by the editors May 1, 2002.
1991 Mathematics Subject Classification. 34A09, 34B60, 35B32, 35J60, 35J70.
Key words and phrases. Degenerate elliptic equations, sequential and continuum bifurcations,

differential-algebraic equations, degenerate diffusion.

c©1997 American Mathematical Society

1



2 R.E. BEARDMORE AND R. LAISTER

λ > 0 is a sequential bifurcation point but not a continuum bifurcation point and
(v) λ = 0 is a continuum bifurcation point.

We remark that the theory in [1] could be used to obtain local versions of some of
the results proved here. However, our results are complementary to [1] in that they
are global and impose no conditions on the growth of g−1 near zero. Furthermore,
we establish the existence of an unbounded interval of sequential bifurcation points.
For the special case g(u) = u|u|m, we note that a global branch of positive solutions
was shown to exist in [2] in a study of flows in porous media.

The remainder of the paper is structured as follows. Section 2 introduces some
notation and preliminary results. The main results of the paper appear in Section 3.
Finally, in Section 4 we apply our results to non-monotone degenerate eigenvalue
problems, degenerate semi-linear elliptic equations, boundary value differential-
algebraic equations and fully non-linear elliptic equations.

2. Preliminaries

Throughout we write U for the closure of U in a given metric space. We denote by
Ck(Ω) the space of k-times differentiable functions on Ω, henceforth written simply
as Ck when there is no ambiguity. We note here that the imbedding Ck ↪→ Cr is
compact if k > r. For any u ∈ C0 with finitely many zeros we shall denote the
number of zeros of u in Ω by ζ(u).

It is well known that L : C2 → C0 together with the Dirichlet boundary condition
(2) has positive, simple eigenvalues henceforth denoted by µj for j ∈ N0 := N ∪
{0}, where the principal eigenvalue µ0 has an associated positive eigenfunction φ0.
Furthermore, L has a continuous inverse K : C0 → C2 which induces a compact
linear map K : C0 → C0.

The problem of finding continuous solutions of (1-2) with g(u(·)) ∈ C2 is there-
fore equivalent to

(3) F (u, λ) := g(u)− λKu = 0, u ∈ C0,

where g : C0 → C0 is the C1 Nemytskii operator for g defined by (g(u))(x) =
g(u(x)). Our approach to solving (3) will be based on the regularized problem

(4) F (u, λ; ε) := g(u) + (εI − λK)u = 0, ε ≥ 0.

We define some solution sets. Throughout E := C0 × R is endowed with the
norm ‖(u, λ)‖E = ‖u‖+ |λ|, where ‖ · ‖ denotes the sup-norm on C0. The symbol
〈·, ·〉 denotes the usual L2 inner product. For ε ≥ 0, Σ(ε) ⊂ E will denote the set
of non-trivial solutions (u, λ) of F (u, λ; ε) = 0 in E. For j ∈ N0 we write Σj(ε) for
the subset of Σ(ε) consisting of functions with j zeros in Ω. By Σ+

j (ε) (Σ−j (ε)) we
denote the subset of Σj(ε) of functions u such that g(u)x(0) > 0 (g(u)x(0) < 0). For
notational convenience we will simply write Σ instead of Σ(0) and Σ±j for Σ±j (0).
We note here that since g is odd, (u, λ) ∈ Σ(ε) if and only if (−u, λ) ∈ Σ(ε).
Consequently Σ−j (ε) = −Σ+

j (ε).

Remark 1. The map F : C0 × R → C0 is C1 and has partial Fréchet derivative
duF (u, λ)[h] = g′(u)h − λKh which is not a Fredholm mapping at u = 0 since
g′(0) = 0. Consequently, one cannot use reduction methods based on the implicit
function theorem to study bifurcations of (3) from the trivial solution. See also
[3, 4, 15]. Moreover, duF (0, λ) = −λK which, for λ 6= 0, has point spectrum and
zero in the essential spectrum, but when λ = 0 the spectrum consists only of zero.
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Lemma 2.1. Fix ε ≥ 0. If (u, λ) ∈ Σ(ε), then λ > 0; that is Σ(ε) ⊂ C0 × (0,∞).

Proof. Multiplying the relation F (u, λ; ε) = 0 by u and integrating over Ω gives,
after setting v = Ku,∫

Ω

εu2 + ug(u) dx = λ

∫

Ω

uKu dx = λ

∫

Ω

vLv dx.

Noting that ug(u) ≥ 0 and 〈v, Lv〉 ≥ 0, the result follows. ¤

Lemma 2.2. For ε ∈ [0, 1] the following a priori bound applies: to each ` > 0 there
is an M(`) > 0, independent of ε, such that if λ ∈ [0, `] then ‖u‖ ≤ M(`) whenever
(u, λ) ∈ Σ(ε).

Proof. Suppose that εu + g(u) = λKu, where 0 ≤ ε ≤ 1, 0 ≤ λ ≤ ` and let x0 ∈ Ω
satisfy ‖u‖ = |u(x0)|. Then

||g(u(x0))| − | − εu(x0)|| ≤ |g(u(x0)) + εu(x0)| ≤ λ‖K‖|u(x0)|,
where ‖K‖ denotes the operator norm of K ∈ BL(C0). We therefore obtain
γ(‖u‖) ≤ λ‖K‖ + ε ≤ `‖K‖ + 1. Noting that γ| : [0,∞) → [0,∞) is surjective
(by G3) and non-decreasing (by G2), the result follows on defining M(`) to be any
positive solution of γ(M) = `‖K‖+ 1. ¤

Since ε+g′(u) ≥ ε > 0 for all u ∈ R and ε > 0, the algebraic equation εu+g(u) =
v has a unique solution u = G(v; ε), where G(·; ε) ∈ C1(R). When ε = 0 we simply
have G(v; 0) = g−1(v), which is continuous. Moreover, G : R × [0,∞) → R is
continuous. We shall use this notation throughout and in the following theorem,
which is a consequence of global bifurcation theory.

Theorem 2.3. For each ε > 0 and j ∈ N0, there are open, connected and un-
bounded sets C±j (ε) ⊂ Σ±j (ε) such that (0, εµj) ∈ C±j (ε). Furthermore, for every
λ > εµj there exist (±uj,ε, λ) ∈ C±j (ε), so that (εµj ,∞) ⊂ Π

(
C±j (ε)

)
, where

Π : E → R is the natural projection.

Proof. For each fixed ε > 0, apply global bifurcation results [13] to v = λKG(v; ε)
and use the nodal properties of solutions to regular elliptic equations to demonstrate
the existence of disjoint, unbounded continua C±j (ε) with the stated properties. The
existence of (±uj,ε, λ) for λ > εµj follows from the unboundedness of C±j (ε) in E,
Lemma 2.1 and Lemma 2.2. ¤

If u is a non-trivial solution of (4) with ε > 0 then the zeros of the function
εu + g(u) are transverse. The following result shows that transversality persists
when ε = 0.

Theorem 2.4. (See [9, Theorem 2.2]). Suppose that f ∈ C0(R) is strictly increas-
ing and f(0) = 0. If u ∈ C2(Ω) is a solution of the initial value problem Lu = f(u)
on Ω with u(α) = ux(α) = 0 for some α ∈ Ω, then u ≡ 0 on Ω. Furthermore, u
has a finite number of zeros in Ω.

Corollary 2.5. If (u, λ) ∈ Σ then ζ(u) = ζ(g(u)) < ∞ and all zeros of g(u) in Ω
are transverse. In particular, Σ = ∪∞j=0

(
Σ+

j ∪ Σ−j
)
.

Proof. If (u, λ) ∈ Σ and v := g(u), then Lv = λg−1(v). The result follows from
Lemma 2.1 and Theorem 2.4 with f(v) = λg−1(v). ¤
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3. The main results

In this section we prove the main results on the existence of non-trivial solutions
of (3) and the nature of bifurcation points.

3.1. Existence of non-trivial solutions. We begin with an existence and unique-
ness result for elliptic equations.

Lemma 3.1. Suppose Au := −(α(x)ux)x +β(x)u, where α and β satisfy the same
assumptions as a and b. Let λ > 0 and ε ≥ 0 be fixed. If there exists a positive
subsolution ψ of the elliptic problem

(5) Av = λG(v; ε), v(0) = v(1) = 0,

then there exists a unique non-trivial, non-negative solution v of (5). Moreover,
v ≥ ψ.

Proof. By assumption G3, limv→∞G(v; ε)/v = 0 for fixed ε ≥ 0. In particular this
implies that lim supv→∞ λG(v; ε)/v < κ0, where κ0 denotes the principal eigenvalue
of A. It is well known [6, 11] that non-negative solutions of the associated parabolic
problem

(6) vt = −Av + λG(v; ε), v(0, t) = v(1, t) = 0

(with continuous initial condition v(x, 0) = v0(x)) have non-empty omega-limit sets
ω(v0) contained in the equilibrium set, comprising of solutions of (5). In particular,
since ψ is also a subsolution of (6), there exists a solution v of (5) such that v ≥ ψ.
It therefore remains only to establish the uniqueness of v.

Suppose w is any non-trivial, non-negative solution of (5). By G1 and the
maximum principle, w > 0 in Ω. Now,

∫ 1

0
vAw − wAv dx = 0 so that

λ

∫ 1

0

vG(w; ε)− wG(v; ε) dx =
∫ 1

0

λvw

(
G(w; ε)

w
− G(v; ε)

v

)
dx = 0.

By G2, s 7→ G(s; ε)/s is decreasing for all s > 0. Hence if v and w are ordered in
C0, then v = w and v is unique. If v and w are not ordered in C0 then, for any
v0 ≥ max{v, w}, ω(v0) must contain a solution z of (5) such that z ≥ max{v, w},
whence z 6= v and z 6= w. Hence z and v are ordered in C0 and the above argument
(with w replaced by z) yields z = v, a contradiction. ¤

The following result is crucial, showing that non-trivial j-zero solutions of the
regularized problem (4) cannot accumulate on the trivial branch as ε → 0, except
possibly at the origin.

Proposition 3.2. Let j ∈ N0 be fixed and 0 ≤ εn → 0 as n → ∞. If (un, λn) ∈
Σ+

j (εn) satisfies (un, λn) → (0, λ) in E as n →∞, then λ = 0. An analogous result
holds for Σ−j (εn).

Proof. Necessarily λ ≥ 0 by Lemma 2.1, so suppose that λ > 0. We first consider
the case j = 0 (positive solutions). Fix λ∗ ∈ (0, λ) and choose n0 such that
εn < min{µ0, (λ∗/µ0)} and λn > λ∗ for all n > n0. By the degeneracy of g there is
a U > 0 (independent of n) such that g(u) + εnu ≤ (λ∗/µ0)u for all u ∈ [0, U ] and
n > n0. Hence there is a V > 0 (independent of n) such that G(v; εn) ≥ (µ0/λ∗)v
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for all v ∈ [0, V ] and n > n0. Let us normalise the principal eigenfunction of L, φ0,
so that ‖φ0‖ = V . Since G(φ0, εn) ≥ (µ0/λ∗)φ0 it follows that

−Lφ0 + λnG(φ0; εn) ≥ −Lφ0 + λn(µ0/λ∗)φ0 ≥ 0

and so φ0 is a subsolution of

(7) Lv = λnG(v; εn), v(0) = v(1) = 0.

Hence by Lemma 3.1 there exists a unique positive solution wn of (7) and wn ≥ φ0.
Now, vn := εnun + g(un) is also a positive solution of (7) and so by uniqueness
vn = wn. But since vn = λnKun and un → 0 in C0 as n → ∞ it follows that
vn → 0 in C2. In particular, by Hopf’s boundary point lemma [12] applied to φ0,
there exists an n1 > n0 such that vn < φ0 in Ω for all n > n1, a contradiction.
This proves the result for j = 0. The result for Σ−j (εn) is a trivial consequence of
the symmetry of g.

Now suppose that j ≥ 1. If ξi
n (i = 0, ..., j + 1) denote the zeros of un in Ω in

increasing order, let δi
n = ξi+1

n −ξi
n (i = 0, ..., j). Then vn := εnun +g(un) (suitably

restricted) is a constant sign solution of

(8) Lv = λnG(v; εn), v(ξi
n) = v(ξi+1

n ) = 0.

Since Σj
i=0δ

i
n ≡ 1, we can assume for some i that δi

n (=: δn) remains uniformly
bounded away from zero. Passing to a subsequence if necessary we may assume
that δn → δ∞ ∈ (0, 1] as n →∞. Now rescale the spatial variable x in (8) according
to x 7→ (x−ξi+1

n )/δn and, without loss of generality by the symmetry of g, we obtain
a sequence vn of positive solutions of

(9) Lnv = λnG(v; εn), v(0) = v(1) = 0,

with vn → 0 in C2, where Lnv := −δ−2
n (a(x)vx)x + b(x)v. If we denote by {µn

0 , φn
0}

the principal eigenpair of the operator Ln, then spectral perturbation results for
simple eigenvalues [7] show that µn

0 → µ∞0 , the principal eigenvalue of L∞, and
φn

0 → φ∞0 in C2, where φ∞0 is the corresponding principal eigenfunction.
Note that there is a V > 0 (independent of n) and an n2 > n0 such that

G(v; εn) ≥ (µ∞0 + 1)v/λ∗ for all v ∈ [0, V ] and n > n2. If φn
0 is normalised so that

‖φn
0‖ = V then

(10) −Lnφn
0 +λnG(φn

0 ; εn) ≥ −Lnφn
0 +λn(µ∞0 +1)φn

0/λ∗ ≥ (µ∞0 +1−µn
0 )φn

0 ≥ 0,

for all n > n2 and so φn
0 is a positive subsolution of (9) for all such n. An identical

argument to the j = 0 case then leads to a contradiction as before. ¤
We can now prove the following existence result for (3).

Theorem 3.3. Let λ > 0 and j ∈ N0 be given. Then there exist (±uj , λ) ∈ Σ±j ;
that is Π

(
Σ±j

)
= (0,∞).

Proof. Let εn → 0 be any positive sequence. From Lemma 2.2 and Proposition 3.2
with λn ≡ λ, there is a sequence un of C2 solutions of (4) which is C0-bounded and
bounded away from zero in C0. Since Kun is therefore C2-bounded we may pass to
a subsequence if necessary and assume that there is a z ∈ C1 such that Kun → z
in C1. Hence, it follows that εnun + g(un) → λz in C1, from where εnun → 0 in
C0, so that g(un) → λz in C0. Consequently, un → g−1(λz) =: u in C0. Therefore,

‖g(u)− λKu‖ = ‖(g(u)− g(un)) + (g(un)− λKun) + (λKun − λKu)‖
≤ ‖g(u)− g(un)‖+ εn‖un‖+ λ‖K‖‖un − u‖ → 0.
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Hence u is a solution of (3). Since z is a C1-limit of functions with exactly j
transverse zeros we have ζ(z) = j, whence ζ(u) = ζ(g(u)) = ζ(λz) = j. ¤
3.2. Sequential and continuum bifurcations. We may now establish the exis-
tence of an unbounded interval of sequential bifurcation points.

Theorem 3.4. For each λ > 0 there exists a sequence (uj , λ) ∈ Σ such that
ζ(uj) = j and uj → 0 in C0 as j → ∞. In particular, every λ ≥ 0 is a sequential
bifurcation point for (3).

Proof. Clearly, for each fixed λ > 0 there are infinitely many solutions of (3), uj ,
parameterised by the number of zeros j ∈ N0. Recall that the corresponding zeros
of g(uj) are transverse. We claim that limj→∞ uj = 0 in C0. Using the bound
‖uj‖ ≤ M(λ) from Lemma 2.2, we may assume (on passing to a subsequence) that
there is a z ∈ C1 such that Kuj → z in C1, so that g(uj) → λz in C1 and therefore
uj → g−1(λz) in C0. If u := g−1(λz) then u is a solution of (3). Since ζ(g(uj)) = j,
g(u) cannot have finitely many zeros in Ω. Hence by Theorem 2.4 g(u) = 0, from
where z = 0. Hence g(uj) → 0 in C1 and therefore uj → 0 in C0.

In turn, this implies that λ = 0 is a sequential bifurcation point, simply by
setting λn = 1/n and choosing any (un, λn) ∈ Σ with ‖un‖ ≤ 1/n. ¤

Next we examine the question of which λ ≥ 0 are continuum bifurcation points.

Lemma 3.5. If C ⊂ Σ is connected and (u, λ), (u′, λ′) ∈ C, then ζ(u) = ζ(u′).

Proof. Let (u, λ) ∈ C and suppose that (un, λn) ∈ C satisfies (un, λn) → (u, λ) as
n → ∞. Using g(un) ≡ λKun we find that g(un) → g(u) in C1 and because g(u)
has finitely many transverse zeros, ζ(un) = ζ(g(un)) = ζ(g(u)) = ζ(u) for all n
sufficiently large. This shows that ζ(·) is an integer-valued continuous function on
C and is therefore constant on C. ¤
Corollary 3.6. For all λ > 0, λ is not a continuum bifurcation point.

Proof. If λ > 0 is a continuum bifurcation point then there exists a connected set
C ⊂ Σ and a sequence (un, λn) ∈ C such that (un, λn) → (0, λ) in E. By Lemma 3.5
there exists a j ∈ N0 such that (un, λn) ∈ Σj for all n. Passing to a subsequence if
necessary, we may assume without loss of generality that (un, λn) ∈ Σ+

j for all n.
By Proposition 3.2 with εn ≡ 0 it follows that λ = 0, a contradiction. ¤
Theorem 3.7. λ = 0 is a continuum bifurcation point for (3).

Proof. For each λ > 0 there is a unique (u+, λ) ∈ Σ+
0 by Theorem 3.3 and

Lemma 3.1. We prove that the map λ 7→ u+(λ) (with u+(0) = 0) from [0,∞) → C0

is continuous.
Fix λ ≥ 0 and let λn > 0 be any sequence satisfying λn → λ as n → ∞.

Let u+
n := u+(λn). Suppose that u+(·) is not continuous at λ, then there is a

δ > 0 such that ‖u+
n − u+(λ)‖ ≥ δ for all n. By Lemma 2.2, u+

n is bounded in
C0. From u+

n = λnKg−1(u+
n ) and the compactness of K, there exists a convergent

subsequence, say u+
nj
→ u∗ in C0. Hence u∗ is a solution of Lu∗ = λg−1(u∗). By

Proposition 3.2, if λ > 0 then u∗ = u+(λ) while if λ = 0 then u∗ = 0. Either way
this contradicts the above δ-bound. ¤

We now utilise a theorem from topological analysis to obtain connectedness
results for the sets of non-trivial sign-changing solutions.
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Definition 3.8. Suppose that (Z, d) is a complete metric space and that {Sn}∞n=0

is a family of connected subsets of Z. For S ⊂ Z define d(z, S) := inf
s∈S

d(s, z),

Sinf :=
{

z ∈ Z : lim
n→∞

d(z, Sn) = 0
}

,

Ssup :=
{

z ∈ Z : lim inf
n→∞

d(z, Sn) = 0
}

.

Theorem 3.9. (See [17]). Suppose that
⋃∞

n=0 Sn is relatively compact in Z. If
Sinf 6= ∅, then Ssup is a non-empty, closed and connected subset of Z.

Theorem 3.10. Let j ∈ N0 be given. There exist unbounded, closed and connected
sets C±j ⊂ Σ±j ∪ {(0, 0)} such that (0, 0) ∈ C±j . In particular, Π

(C±j
)

= [0,∞).

Proof. Let εn → 0 be any positive sequence. For fixed ν > 0 let S+,j
n (ν) be the max-

imal connected component of C+
j (εn)∩(C0×[0, ν]) which contains (u, λ) = (0, εnµj)

in its closure, where Cj(ε) is defined in Theorem 2.3. Note that by Theorem 2.3,
S+,j

n (ν) contains non-trivial elements of the form (u, λ) for all λ ∈ [εnµj , ν], pro-

vided n is sufficiently large and (0, εnµj) ∈ S+,j
n (ν). By the compactness of [0, ν]

and of the operator K : C0 → C0) it follows that
⋃∞

n=0 S+,j
n (ν) is relatively compact

in E. Clearly (0, 0) ∈ S+,j
inf (ν) and so S+,j

inf (ν) is non-empty. Hence by Theorem 3.9
S+,j

sup (ν) is non-empty, closed and connected in E.
Now, by the construction of solutions in Theorem 3.3 it follows that

{(uj , λ) ∈ Σ+
j : λ ∈ (0, ν]} ∪ {(0, 0)} ⊂ S+,j

inf (ν) ⊂ S+,j
sup (ν).

Moreover, if (u, λ) ∈ S+,j
sup (ν) there exists a sequence (un, λn) ∈ S+,j

n (ν) such that
(un, λn) → (u, λ) in E. Then,

‖g(u)− λKu‖ ≤ ‖g(u)− g(un)‖+ |λn − λ|‖Kun‖
+ λ‖K(un − u)‖+ εn‖un‖ → 0,

so that (u, λ) is a solution of (3). By Proposition 3.2 and Theorem 2.4 either
(u, λ) = (0, 0) or (u, λ) ∈ Σ+

j for some j ∈ N0.

Clearly, S+,j
sup (ν) ⊂ S+,j

sup (ν′) if ν < ν′ and it follows that C+
j :=

⋃
ν>0

S+,j
sup (ν) has

the stated properties. The result for C−j follows similarly. ¤

Example 1. Consider a semi-linear, degenerate elliptic equation ∆ϕ(v)+λf(v) = 0
with Dirichlet boundary conditions on an annulus R1 < |y| < R2 in Rn, [8]. Suppose
that ϕ and f are strictly increasing, odd functions satisfying ϕ(0) = f(0) = 0.
Setting u = f(v) one obtains ∆g(u) + λu = 0, where g(u) := ϕ(f−1(u)). Suppose
that ϕ and f are such that g satisfies G1-G3. Now, radially symmetric solutions
satisfy (rn−1g(u)r)r + λrn−1u = 0, where r = |y|. Setting x = rn/n then yields
the equivalent problem −(a(x)g(u)x)x = λu for x ∈ (Rn

1 /n,Rn
2 /n), where a(x) :=

(nx)2(1−1/n), to which the results of this section apply. Such a situation occurs
when ϕ(v) = v|v|m−1 and f(v) = v|v|p−1 for m > p > 0.

4. Applications

4.1. Non-monotone eigenvalue problems. Here we apply our main results to
problems where g is only locally monotonic near zero. We still obtain infinitely many
solution sets in E parameterised by zeros together with an unbounded interval of
sequential (but not continuum) bifurcation points.
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Lemma 4.1. Let δ > 0 and suppose that g : [0, δ] → [0,∞) is a strictly increasing
C1 function which is C2 on (0, δ] with g(0) = g′(0) = 0 and g′′(δ) > 0. If γ(u) =
g(u)/u satisfies γ′(u) ≥ 0 on (0, δ] then there exists an odd, strictly increasing C1

extension g : R → R such that g|[0,δ] = g|[0,δ]. Moreover, if γ(u) := g(u)/u then
γ′(u) ≥ 0 for all u > 0 and γ(u) →∞ as |u| → ∞.

Proof. Since u2γ′(u) = ug′(u) − g(u) we have g′(δ) > 0. Now define g to be the
odd extension of the function{

g(u) : 0 ≤ u ≤ δ
g(δ) + (u− δ)g′(δ) + 1

2 (u− δ)2g′′(δ) : u ≥ δ,

and then for |u| ≥ δ we have u2γ′(u) = δ2γ′(δ) + 1
2g′′(δ)(u2 − δ2) ≥ 0. ¤

We can now deduce the following result when g is only locally monotonic.

Theorem 4.2. For some δ > 0 suppose that g : [−δ, δ] → R is a strictly increasing,
odd, C1 function which is C2 on [−δ, δ]\{0} and g(0) = g′(0) = 0, g′′(δ) > 0. If
γ′(u) ≥ 0 on (0, δ] then there exist closed, connected sets C±j ⊂ Σ±j ∪ {(0, 0)} such
that (0, 0) ∈ C±j . At least one, but possibly both, of the following is true:

(1) C±j is unbounded,
(2) there exists a (u, λ) ∈ C±j such that ‖u‖ = δ.

Furthermore, for each λ > 0 there exists a sequence uj ∈ Σ such that ζ(uj) → ∞
and uj → 0 in C0 as j →∞. In particular, every λ ≥ 0 is a sequential bifurcation
point and λ = 0 is a continuum bifurcation point for (3).

Proof. Use Lemma 4.1 to replace (3) by g(u) = λKu to which Theorems 3.10 and
3.4 apply. The result follows from the fact that solutions of g(u) = λKu with
‖u‖ ≤ δ also satisfy (3). ¤

4.2. Degenerate Diffusion Equations. Consider a quasi-linear parabolic equa-
tions of the form

(11) vt − (a(x)D(v)x)x + b(x)D(v) = λf(v),

supplied with Dirichlet boundary conditions and given initial data. Such equations
arise naturally in many branches of the physical and biological sciences [5, 14].
Upon setting u = f(v) and defining g(u) = D(F (u)) (see below) one may use
Theorem 4.2 to obtain information on the existence of equilibrium solutions of (11)
whenever f and D are monotonic near zero. We omit the trivial proof.

Theorem 4.3. Suppose that D, f ∈ C1(R) are odd, strictly increasing functions
such that D(0) = D′(0) = f(0) = 0 and f ′(0) > 0. Let F denote the local C1 inverse
of f near 0. If there exists a δ∗ > 0 such that D ∈ C2(0, δ∗] and uF ′(u)D′(F (u))−
D(F (u)) ≥ 0 on (0, δ∗] then the conclusions of Theorem 4.2 hold for equilibrium
solutions of (11) for each δ ≤ δ∗ for which (D(F ))′′(δ) > 0. In particular, the latter
conditions hold for all sufficiently small δ > 0 whenever D, f ∈ C3(R), D′′(0) = 0
and D′′′(0) > 0.

Example 2. Theorem 4.3 applies to a degenerate form of the Chafée-Infante prob-
lem (see [6])

vt − (v|v|m)xx = λv(1− v2), m > 0.
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Example 3. Consider the slow diffusion problem

ut − (a(x)[exp (−1/u)]x)x = λu

with Dirichlet boundary conditions, where g(u) := [exp (−1/u)] denotes the odd
extension of exp (−1/u) for u > 0. Theorem 4.3 applies to the associated steady-
state problem. Note however, that the global results of Section 3 do not apply even
though g is globally monotonic due to the failure of the coercivity condition G3.
Due to the flat nature of g at u = 0, the results of [1] do not apply to this equation.

4.3. Boundary-value differential-algebraic equations. We can also use the
above results to find steady-states of parabolic systems

ut + Lu = λF (u, v), u(0, t) = u(1, t) = 0,

vt = G(u, v),

or equivalently, the boundary-value differential-algebraic equation (DAE)

(12) Lu = λF (u, v), G(u, v) = 0, u(0) = u(1) = 0.

Problems of this nature are considered in [10], motivated by interactions between
diffusive and non-diffusive species. We have the following theorem regarding solu-
tions of (12).

Theorem 4.4. Suppose that F and G are Cr functions with r ≥ 4 such that
F (0, 0) = G(0, 0) = 0, Gv(0, 0) = Gvv(0, 0) = 0, F (−u,−v) = −F (u, v) and
G(u,−v) = −G(−u, v). If GuFvGvvv < 0 at (0, 0) then λ = 0 is a continuum
bifurcation point to a branch of positive solutions of (12). There are countably
many sets of non-trivial solutions Cj ⊂ C2(Ω)×C0(Ω)×R such that Cj ∪{(0, 0, 0)}
is connected and if (u, v, λ) ∈ Cj then u and v have j zeros in Ω. Every λ ∈ (0,∞)
is a sequential bifurcation point, but no element of (0,∞) is a continuum bifurcation
point.

Proof. Apply the implicit function theorem to G(u, v) = 0 and solve this constraint
as u = U(v), where U(0) = U ′(0) = U ′′(0) = 0 and U ′′′(0) = −Gvvv(0, 0)/Gu(0, 0) 6=
0. Then (12) is reduced to LU(v) = λF (U(v), v), so now set w = F (U(v), v).
This can be solved by the inverse function theorem for v = V (w) such that
V (0) = 0, V ′(0) = 1/Fv(0, 0) and V ′′(0) = −Fvv(0, 0)/Fv(0, 0)3. Now, (12) is
locally equivalent to LU(V (w)) = λw, so we set g(w) = U(V (w)).

Now, the hypotheses on F and G ensure that U and V are odd functions, so
that g(w) is also odd, now set γ(w) = g(w)/w. Differentiating, we see that g(w) =
ξw3+o(w3) where ξ = −GvvvGuFv/(G2

uF 4
v ) > 0 and where each of these derivatives

is evaluated at (u, v) = (0, 0). Hence there is a δ > 0 such that g(w) > 0, γ′(w) > 0
on (0, δ] and g′′(δ) > 0. One can now apply Theorem 4.2 to Lg(w) = λw. ¤
Example 4. The hypotheses of Theorem 4.4 are satisfied by the steady-state prob-
lem for the reaction-diffusion system

ut − uxx = λ sin v, u(0, t) = u(1, t) = 0,

vt = u + u2v − v3.

Remark 2. Fully non-linear elliptic equations of the form

(13) Lu = f(u, Lu), u(0) = u(1) = 0,

can be written as a boundary-value DAE by setting v = Lu, F (u, v) = v and
G(u, v) = f(u, v) − v. Problems of this type are studied, for instance, in [16]. A
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solution of (12) when λ = 1 provides a solution of (13) and these can be obtained
using Theorem 4.4 with suitable restrictions on f .
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