SEQUENTIAL AND CONTINUUM BIFURCATIONS IN DEGENERATE ELLIPTIC EQUATIONS

R.E. BEARDMORE AND R. LAISTER

Abstract

We examine the bifurcations to positive and sign-changing solutions of degenerate elliptic equations. In the problems we study, which do not represent Fredholm operators, we show that there is a critical parameter value at which an infinity of bifurcations occur from the trivial solution. Moreover, a bifurcation occurs at each point in some unbounded interval in parameter space. We apply our results to non-monotone eigenvalue problems, degenerate semi-linear elliptic equations, boundary value differential-algebraic equations and fully non-linear elliptic equations.

1. Introduction

In this paper we consider the non-linear, degenerate eigenvalue problem

$$
\begin{align*}
\operatorname{Lg}(u)=\lambda u, & x \in \Omega:=(0,1), \tag{1}\\
u=0, & x \in \partial \Omega \tag{2}
\end{align*}
$$

where $L u:=-\left(a(x) u_{x}\right)_{x}+b(x) u$ and the coefficients $a, b \in C^{1}(\bar{\Omega})$ satisfy $a>0$ and $b \geq 0$ on $\bar{\Omega}$. Consequently L is uniformly elliptic, but the non-linear function $g \in C^{1}(\mathbb{R})$ is assumed to degenerate at zero with $g(0)=g^{\prime}(0)=0$.

Let us define $\gamma(u)=g(u) / u$ with $\gamma(0)=0$ and begin with the statement of our assumptions on g :

G1. g is an odd, strictly increasing function on \mathbb{R},
G2. γ is strictly increasing for $u>0$,
G3. $\gamma(u) \rightarrow \infty$ as $|u| \rightarrow \infty$.
These are all satisfied if, for instance, $g(u)=u|u|^{m}$, where $m>0$.
Definition 1.1. Let X, Y be Banach spaces, $F: X \times \mathbb{R} \rightarrow Y$ be continuous and satisfy $F(0, \lambda)=0$ for all $\lambda \in \mathbb{R}$. Let $\Sigma \subset X \times \mathbb{R}$ denote the set of all non-trivial $(u \neq 0)$ solutions of $F(u, \lambda)=0$. We say that λ_{0} is a sequential bifurcation point from the trivial solution for $F(u, \lambda)=0$ if there is a sequence $\left(u_{n}, \lambda_{n}\right) \in \Sigma$ such that $\left(u_{n}, \lambda_{n}\right) \rightarrow\left(0, \lambda_{0}\right)$ in $X \times \mathbb{R}$ as $n \rightarrow \infty$. If such a sequence $\left(u_{n}, \lambda_{n}\right)$ lies in some connected set $\mathcal{C} \subset \Sigma$, then λ_{0} is said to be a continuum bifurcation point.

We prove the following for (1-2). To each $\lambda>0$ there is a sequence $u_{n}(\lambda) \in$ $C^{0}(\bar{\Omega})$ of solutions of (1-2) such that (i) the number of zeros of $u_{n}(\lambda)$ in Ω is n, (ii) $u_{n}(\lambda) \rightarrow 0$ in $C^{0}(\bar{\Omega})$ as $n \rightarrow \infty$, (iii) $u_{n}(\lambda) \rightarrow 0$ in $C^{0}(\bar{\Omega})$ as $\lambda \rightarrow 0$, (iv) every

[^0]$\lambda>0$ is a sequential bifurcation point but not a continuum bifurcation point and (v) $\lambda=0$ is a continuum bifurcation point.

We remark that the theory in [1] could be used to obtain local versions of some of the results proved here. However, our results are complementary to [1] in that they are global and impose no conditions on the growth of g^{-1} near zero. Furthermore, we establish the existence of an unbounded interval of sequential bifurcation points. For the special case $g(u)=u|u|^{m}$, we note that a global branch of positive solutions was shown to exist in [2] in a study of flows in porous media.

The remainder of the paper is structured as follows. Section 2 introduces some notation and preliminary results. The main results of the paper appear in Section 3. Finally, in Section 4 we apply our results to non-monotone degenerate eigenvalue problems, degenerate semi-linear elliptic equations, boundary value differentialalgebraic equations and fully non-linear elliptic equations.

2. Preliminaries

Throughout we write \bar{U} for the closure of U in a given metric space. We denote by $C^{k}(\bar{\Omega})$ the space of k-times differentiable functions on $\bar{\Omega}$, henceforth written simply as C^{k} when there is no ambiguity. We note here that the imbedding $C^{k} \hookrightarrow C^{r}$ is compact if $k>r$. For any $u \in C^{0}$ with finitely many zeros we shall denote the number of zeros of u in Ω by $\zeta(u)$.

It is well known that $L: C^{2} \rightarrow C^{0}$ together with the Dirichlet boundary condition (2) has positive, simple eigenvalues henceforth denoted by μ_{j} for $j \in \mathbb{N}_{0}:=\mathbb{N} \cup$ $\{0\}$, where the principal eigenvalue μ_{0} has an associated positive eigenfunction ϕ_{0}. Furthermore, L has a continuous inverse $K: C^{0} \rightarrow C^{2}$ which induces a compact linear map $K: C^{0} \rightarrow C^{0}$.

The problem of finding continuous solutions of (1-2) with $g(u(\cdot)) \in C^{2}$ is therefore equivalent to

$$
\begin{equation*}
F(u, \lambda):=g(u)-\lambda K u=0, \quad u \in C^{0} \tag{3}
\end{equation*}
$$

where $g: C^{0} \rightarrow C^{0}$ is the C^{1} Nemytskii operator for g defined by $(g(u))(x)=$ $g(u(x))$. Our approach to solving (3) will be based on the regularized problem

$$
\begin{equation*}
F(u, \lambda ; \varepsilon):=g(u)+(\varepsilon I-\lambda K) u=0, \quad \varepsilon \geq 0 \tag{4}
\end{equation*}
$$

We define some solution sets. Throughout $E:=C^{0} \times \mathbb{R}$ is endowed with the norm $\|(u, \lambda)\|_{E}=\|u\|+|\lambda|$, where $\|\cdot\|$ denotes the sup-norm on C^{0}. The symbol $\langle\cdot, \cdot\rangle$ denotes the usual L^{2} inner product. For $\varepsilon \geq 0, \Sigma(\varepsilon) \subset E$ will denote the set of non-trivial solutions (u, λ) of $F(u, \lambda ; \varepsilon)=0$ in E. For $j \in \mathbb{N}_{0}$ we write $\Sigma_{j}(\varepsilon)$ for the subset of $\Sigma(\varepsilon)$ consisting of functions with j zeros in Ω. By $\Sigma_{j}^{+}(\varepsilon)\left(\Sigma_{j}^{-}(\varepsilon)\right)$ we denote the subset of $\Sigma_{j}(\varepsilon)$ of functions u such that $g(u)_{x}(0)>0\left(g(u)_{x}(0)<0\right)$. For notational convenience we will simply write Σ instead of $\Sigma(0)$ and $\Sigma_{j}^{ \pm}$for $\Sigma_{j}^{ \pm}(0)$. We note here that since g is odd, $(u, \lambda) \in \Sigma(\varepsilon)$ if and only if $(-u, \lambda) \in \Sigma(\varepsilon)$. Consequently $\Sigma_{j}^{-}(\varepsilon)=-\Sigma_{j}^{+}(\varepsilon)$.
Remark 1. The map $F: C^{0} \times \mathbb{R} \rightarrow C^{0}$ is C^{1} and has partial Fréchet derivative $d_{u} F(u, \lambda)[h]=g^{\prime}(u) h-\lambda K h$ which is not a Fredholm mapping at $u=0$ since $g^{\prime}(0)=0$. Consequently, one cannot use reduction methods based on the implicit function theorem to study bifurcations of (3) from the trivial solution. See also $[3,4,15]$. Moreover, $d_{u} F(0, \lambda)=-\lambda K$ which, for $\lambda \neq 0$, has point spectrum and zero in the essential spectrum, but when $\lambda=0$ the spectrum consists only of zero.

Lemma 2.1. Fix $\varepsilon \geq 0$. If $(u, \lambda) \in \Sigma(\varepsilon)$, then $\lambda>0$; that is $\Sigma(\varepsilon) \subset C^{0} \times(0, \infty)$.
Proof. Multiplying the relation $F(u, \lambda ; \varepsilon)=0$ by u and integrating over Ω gives, after setting $v=K u$,

$$
\int_{\Omega} \varepsilon u^{2}+u g(u) d x=\lambda \int_{\Omega} u K u d x=\lambda \int_{\Omega} v L v d x
$$

Noting that $u g(u) \geq 0$ and $\langle v, L v\rangle \geq 0$, the result follows.
Lemma 2.2. For $\varepsilon \in[0,1]$ the following a priori bound applies: to each $\ell>0$ there is an $M(\ell)>0$, independent of ε, such that if $\lambda \in[0, \ell]$ then $\|u\| \leq M(\ell)$ whenever $(u, \lambda) \in \Sigma(\varepsilon)$.
Proof. Suppose that $\varepsilon u+g(u)=\lambda K u$, where $0 \leq \varepsilon \leq 1,0 \leq \lambda \leq \ell$ and let $x_{0} \in \Omega$ satisfy $\|u\|=\left|u\left(x_{0}\right)\right|$. Then

$$
\left\|g (u (x _ { 0 })) \left|-\left|-\varepsilon u\left(x_{0}\right)\left\|\leq\left|g\left(u\left(x_{0}\right)\right)+\varepsilon u\left(x_{0}\right)\right| \leq \lambda\right\| K \|\left|u\left(x_{0}\right)\right|,\right.\right.\right.
$$

where $\|K\|$ denotes the operator norm of $K \in B L\left(C^{0}\right)$. We therefore obtain $\gamma(\|u\|) \leq \lambda\|K\|+\varepsilon \leq \ell\|K\|+1$. Noting that $\gamma \mid:[0, \infty) \rightarrow[0, \infty)$ is surjective (by G3) and non-decreasing (by G2), the result follows on defining $M(\ell)$ to be any positive solution of $\gamma(M)=\ell\|K\|+1$.

Since $\varepsilon+g^{\prime}(u) \geq \varepsilon>0$ for all $u \in \mathbb{R}$ and $\varepsilon>0$, the algebraic equation $\varepsilon u+g(u)=$ v has a unique solution $u=G(v ; \varepsilon)$, where $G(\cdot ; \varepsilon) \in C^{1}(\mathbb{R})$. When $\varepsilon=0$ we simply have $G(v ; 0)=g^{-1}(v)$, which is continuous. Moreover, $G: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ is continuous. We shall use this notation throughout and in the following theorem, which is a consequence of global bifurcation theory.

Theorem 2.3. For each $\varepsilon>0$ and $j \in \mathbb{N}_{0}$, there are open, connected and unbounded sets $C_{j}^{ \pm}(\varepsilon) \subset \Sigma_{j}^{ \pm}(\varepsilon)$ such that $\left(0, \varepsilon \mu_{j}\right) \in \overline{C_{j}^{ \pm}(\varepsilon)}$. Furthermore, for every $\lambda>\varepsilon \mu_{j}$ there exist $\left(\pm u_{j, \varepsilon}, \lambda\right) \in C_{j}^{ \pm}(\varepsilon)$, so that $\left(\varepsilon \mu_{j}, \infty\right) \subset \Pi\left(C_{j}^{ \pm}(\varepsilon)\right)$, where $\Pi: E \rightarrow \mathbb{R}$ is the natural projection.
Proof. For each fixed $\varepsilon>0$, apply global bifurcation results [13] to $v=\lambda K G(v ; \varepsilon)$ and use the nodal properties of solutions to regular elliptic equations to demonstrate the existence of disjoint, unbounded continua $C_{j}^{ \pm}(\varepsilon)$ with the stated properties. The existence of $\left(\pm u_{j, \varepsilon}, \lambda\right)$ for $\lambda>\varepsilon \mu_{j}$ follows from the unboundedness of $C_{j}^{ \pm}(\varepsilon)$ in E, Lemma 2.1 and Lemma 2.2.

If u is a non-trivial solution of (4) with $\varepsilon>0$ then the zeros of the function $\varepsilon u+g(u)$ are transverse. The following result shows that transversality persists when $\varepsilon=0$.

Theorem 2.4. (See [9, Theorem 2.2]). Suppose that $f \in C^{0}(\mathbb{R})$ is strictly increasing and $f(0)=0$. If $u \in C^{2}(\bar{\Omega})$ is a solution of the initial value problem $L u=f(u)$ on $\bar{\Omega}$ with $u(\alpha)=u_{x}(\alpha)=0$ for some $\alpha \in \bar{\Omega}$, then $u \equiv 0$ on $\bar{\Omega}$. Furthermore, u has a finite number of zeros in $\bar{\Omega}$.
Corollary 2.5. If $(u, \lambda) \in \Sigma$ then $\zeta(u)=\zeta(g(u))<\infty$ and all zeros of $g(u)$ in $\bar{\Omega}$ are transverse. In particular, $\Sigma=\cup_{j=0}^{\infty}\left(\Sigma_{j}^{+} \cup \Sigma_{j}^{-}\right)$.
Proof. If $(u, \lambda) \in \Sigma$ and $v:=g(u)$, then $L v=\lambda g^{-1}(v)$. The result follows from Lemma 2.1 and Theorem 2.4 with $f(v)=\lambda g^{-1}(v)$.

3. The main results

In this section we prove the main results on the existence of non-trivial solutions of (3) and the nature of bifurcation points.
3.1. Existence of non-trivial solutions. We begin with an existence and uniqueness result for elliptic equations.

Lemma 3.1. Suppose $A u:=-\left(\alpha(x) u_{x}\right)_{x}+\beta(x) u$, where α and β satisfy the same assumptions as a and b. Let $\lambda>0$ and $\varepsilon \geq 0$ be fixed. If there exists a positive subsolution ψ of the elliptic problem

$$
\begin{equation*}
A v=\lambda G(v ; \varepsilon), \quad v(0)=v(1)=0 \tag{5}
\end{equation*}
$$

then there exists a unique non-trivial, non-negative solution v of (5). Moreover, $v \geq \psi$.

Proof. By assumption G3, $\lim _{v \rightarrow \infty} G(v ; \varepsilon) / v=0$ for fixed $\varepsilon \geq 0$. In particular this implies that $\limsup _{v \rightarrow \infty} \lambda G(v ; \varepsilon) / v<\kappa_{0}$, where κ_{0} denotes the principal eigenvalue of A. It is well known $[6,11]$ that non-negative solutions of the associated parabolic problem

$$
\begin{equation*}
v_{t}=-A v+\lambda G(v ; \varepsilon), \quad v(0, t)=v(1, t)=0 \tag{6}
\end{equation*}
$$

(with continuous initial condition $v(x, 0)=v_{0}(x)$) have non-empty omega-limit sets $\omega\left(v_{0}\right)$ contained in the equilibrium set, comprising of solutions of (5). In particular, since ψ is also a subsolution of (6), there exists a solution v of (5) such that $v \geq \psi$. It therefore remains only to establish the uniqueness of v.

Suppose w is any non-trivial, non-negative solution of (5). By G1 and the maximum principle, $w>0$ in Ω. Now, $\int_{0}^{1} v A w-w A v d x=0$ so that

$$
\lambda \int_{0}^{1} v G(w ; \varepsilon)-w G(v ; \varepsilon) d x=\int_{0}^{1} \lambda v w\left(\frac{G(w ; \varepsilon)}{w}-\frac{G(v ; \varepsilon)}{v}\right) d x=0
$$

By G2, $s \mapsto G(s ; \varepsilon) / s$ is decreasing for all $s>0$. Hence if v and w are ordered in C^{0}, then $v=w$ and v is unique. If v and w are not ordered in C^{0} then, for any $v_{0} \geq \max \{v, w\}, \omega\left(v_{0}\right)$ must contain a solution z of (5) such that $z \geq \max \{v, w\}$, whence $z \neq v$ and $z \neq w$. Hence z and v are ordered in C^{0} and the above argument (with w replaced by z) yields $z=v$, a contradiction.

The following result is crucial, showing that non-trivial j-zero solutions of the regularized problem (4) cannot accumulate on the trivial branch as $\varepsilon \rightarrow 0$, except possibly at the origin.

Proposition 3.2. Let $j \in \mathbb{N}_{0}$ be fixed and $0 \leq \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. If $\left(u_{n}, \lambda_{n}\right) \in$ $\Sigma_{j}^{+}\left(\varepsilon_{n}\right)$ satisfies $\left(u_{n}, \lambda_{n}\right) \rightarrow(0, \lambda)$ in E as $n \rightarrow \infty$, then $\lambda=0$. An analogous result holds for $\Sigma_{j}^{-}\left(\varepsilon_{n}\right)$.
Proof. Necessarily $\lambda \geq 0$ by Lemma 2.1, so suppose that $\lambda>0$. We first consider the case $j=0$ (positive solutions). Fix $\lambda_{*} \in(0, \lambda)$ and choose n_{0} such that $\varepsilon_{n}<\min \left\{\mu_{0},\left(\lambda_{*} / \mu_{0}\right)\right\}$ and $\lambda_{n}>\lambda_{*}$ for all $n>n_{0}$. By the degeneracy of g there is a $U>0$ (independent of n) such that $g(u)+\varepsilon_{n} u \leq\left(\lambda_{*} / \mu_{0}\right) u$ for all $u \in[0, U]$ and $n>n_{0}$. Hence there is a $V>0$ (independent of n) such that $G\left(v ; \varepsilon_{n}\right) \geq\left(\mu_{0} / \lambda_{*}\right) v$
for all $v \in[0, V]$ and $n>n_{0}$. Let us normalise the principal eigenfunction of L, ϕ_{0}, so that $\left\|\phi_{0}\right\|=V$. Since $G\left(\phi_{0}, \varepsilon_{n}\right) \geq\left(\mu_{0} / \lambda_{*}\right) \phi_{0}$ it follows that

$$
-L \phi_{0}+\lambda_{n} G\left(\phi_{0} ; \varepsilon_{n}\right) \geq-L \phi_{0}+\lambda_{n}\left(\mu_{0} / \lambda_{*}\right) \phi_{0} \geq 0
$$

and so ϕ_{0} is a subsolution of

$$
\begin{equation*}
L v=\lambda_{n} G\left(v ; \varepsilon_{n}\right), \quad v(0)=v(1)=0 \tag{7}
\end{equation*}
$$

Hence by Lemma 3.1 there exists a unique positive solution w_{n} of (7) and $w_{n} \geq \phi_{0}$. Now, $v_{n}:=\varepsilon_{n} u_{n}+g\left(u_{n}\right)$ is also a positive solution of (7) and so by uniqueness $v_{n}=w_{n}$. But since $v_{n}=\lambda_{n} K u_{n}$ and $u_{n} \rightarrow 0$ in C^{0} as $n \rightarrow \infty$ it follows that $v_{n} \rightarrow 0$ in C^{2}. In particular, by Hopf's boundary point lemma [12] applied to ϕ_{0}, there exists an $n_{1}>n_{0}$ such that $v_{n}<\phi_{0}$ in Ω for all $n>n_{1}$, a contradiction. This proves the result for $j=0$. The result for $\Sigma_{j}^{-}\left(\varepsilon_{n}\right)$ is a trivial consequence of the symmetry of g.

Now suppose that $j \geq 1$. If $\xi_{n}^{i}(i=0, \ldots, j+1)$ denote the zeros of u_{n} in $\bar{\Omega}$ in increasing order, let $\delta_{n}^{i}=\xi_{n}^{i+1}-\xi_{n}^{i}(i=0, \ldots, j)$. Then $v_{n}:=\varepsilon_{n} u_{n}+g\left(u_{n}\right)$ (suitably restricted) is a constant sign solution of

$$
\begin{equation*}
L v=\lambda_{n} G\left(v ; \varepsilon_{n}\right), \quad v\left(\xi_{n}^{i}\right)=v\left(\xi_{n}^{i+1}\right)=0 \tag{8}
\end{equation*}
$$

Since $\Sigma_{i=0}^{j} \delta_{n}^{i} \equiv 1$, we can assume for some i that $\delta_{n}^{i}\left(=: \delta_{n}\right)$ remains uniformly bounded away from zero. Passing to a subsequence if necessary we may assume that $\delta_{n} \rightarrow \delta_{\infty} \in(0,1]$ as $n \rightarrow \infty$. Now rescale the spatial variable x in (8) according to $x \mapsto\left(x-\xi_{n}^{i+1}\right) / \delta_{n}$ and, without loss of generality by the symmetry of g, we obtain a sequence v_{n} of positive solutions of

$$
\begin{equation*}
L_{n} v=\lambda_{n} G\left(v ; \varepsilon_{n}\right), \quad v(0)=v(1)=0 \tag{9}
\end{equation*}
$$

with $v_{n} \rightarrow 0$ in C^{2}, where $L_{n} v:=-\delta_{n}^{-2}\left(a(x) v_{x}\right)_{x}+b(x) v$. If we denote by $\left\{\mu_{0}^{n}, \phi_{0}^{n}\right\}$ the principal eigenpair of the operator L_{n}, then spectral perturbation results for simple eigenvalues [7] show that $\mu_{0}^{n} \rightarrow \mu_{0}^{\infty}$, the principal eigenvalue of L_{∞}, and $\phi_{0}^{n} \rightarrow \phi_{0}^{\infty}$ in C^{2}, where ϕ_{0}^{∞} is the corresponding principal eigenfunction.

Note that there is a $V>0$ (independent of n) and an $n_{2}>n_{0}$ such that $G\left(v ; \varepsilon_{n}\right) \geq\left(\mu_{0}^{\infty}+1\right) v / \lambda_{*}$ for all $v \in[0, V]$ and $n>n_{2}$. If ϕ_{0}^{n} is normalised so that $\left\|\phi_{0}^{n}\right\|=V$ then
(10) $-L_{n} \phi_{0}^{n}+\lambda_{n} G\left(\phi_{0}^{n} ; \varepsilon_{n}\right) \geq-L_{n} \phi_{0}^{n}+\lambda_{n}\left(\mu_{0}^{\infty}+1\right) \phi_{0}^{n} / \lambda_{*} \geq\left(\mu_{0}^{\infty}+1-\mu_{0}^{n}\right) \phi_{0}^{n} \geq 0$,
for all $n>n_{2}$ and so ϕ_{0}^{n} is a positive subsolution of (9) for all such n. An identical argument to the $j=0$ case then leads to a contradiction as before.

We can now prove the following existence result for (3).
Theorem 3.3. Let $\lambda>0$ and $j \in \mathbb{N}_{0}$ be given. Then there exist $\left(\pm u_{j}, \lambda\right) \in \Sigma_{j}^{ \pm}$; that is $\Pi\left(\Sigma_{j}^{ \pm}\right)=(0, \infty)$.
Proof. Let $\varepsilon_{n} \rightarrow 0$ be any positive sequence. From Lemma 2.2 and Proposition 3.2 with $\lambda_{n} \equiv \lambda$, there is a sequence u_{n} of C^{2} solutions of (4) which is C^{0}-bounded and bounded away from zero in C^{0}. Since $K u_{n}$ is therefore C^{2}-bounded we may pass to a subsequence if necessary and assume that there is a $z \in C^{1}$ such that $K u_{n} \rightarrow z$ in C^{1}. Hence, it follows that $\varepsilon_{n} u_{n}+g\left(u_{n}\right) \rightarrow \lambda z$ in C^{1}, from where $\varepsilon_{n} u_{n} \rightarrow 0$ in C^{0}, so that $g\left(u_{n}\right) \rightarrow \lambda z$ in C^{0}. Consequently, $u_{n} \rightarrow g^{-1}(\lambda z)=: u$ in C^{0}. Therefore,

$$
\begin{aligned}
\|g(u)-\lambda K u\| & =\left\|\left(g(u)-g\left(u_{n}\right)\right)+\left(g\left(u_{n}\right)-\lambda K u_{n}\right)+\left(\lambda K u_{n}-\lambda K u\right)\right\| \\
& \leq\left\|g(u)-g\left(u_{n}\right)\right\|+\varepsilon_{n}\left\|u_{n}\right\|+\lambda\|K\|\left\|u_{n}-u\right\| \rightarrow 0
\end{aligned}
$$

Hence u is a solution of (3). Since z is a C^{1}-limit of functions with exactly j transverse zeros we have $\zeta(z)=j$, whence $\zeta(u)=\zeta(g(u))=\zeta(\lambda z)=j$.
3.2. Sequential and continuum bifurcations. We may now establish the existence of an unbounded interval of sequential bifurcation points.

Theorem 3.4. For each $\lambda>0$ there exists a sequence $\left(u_{j}, \lambda\right) \in \Sigma$ such that $\zeta\left(u_{j}\right)=j$ and $u_{j} \rightarrow 0$ in C^{0} as $j \rightarrow \infty$. In particular, every $\lambda \geq 0$ is a sequential bifurcation point for (3).
Proof. Clearly, for each fixed $\lambda>0$ there are infinitely many solutions of (3), u_{j}, parameterised by the number of zeros $j \in \mathbb{N}_{0}$. Recall that the corresponding zeros of $g\left(u_{j}\right)$ are transverse. We claim that $\lim _{j \rightarrow \infty} u_{j}=0$ in C^{0}. Using the bound $\left\|u_{j}\right\| \leq M(\lambda)$ from Lemma 2.2, we may assume (on passing to a subsequence) that there is a $z \in C^{1}$ such that $K u_{j} \rightarrow z$ in C^{1}, so that $g\left(u_{j}\right) \rightarrow \lambda z$ in C^{1} and therefore $u_{j} \rightarrow g^{-1}(\lambda z)$ in C^{0}. If $u:=g^{-1}(\lambda z)$ then u is a solution of (3). Since $\zeta\left(g\left(u_{j}\right)\right)=j$, $g(u)$ cannot have finitely many zeros in Ω. Hence by Theorem $2.4 g(u)=0$, from where $z=0$. Hence $g\left(u_{j}\right) \rightarrow 0$ in C^{1} and therefore $u_{j} \rightarrow 0$ in C^{0}.

In turn, this implies that $\lambda=0$ is a sequential bifurcation point, simply by setting $\lambda_{n}=1 / n$ and choosing any $\left(\bar{u}_{n}, \lambda_{n}\right) \in \Sigma$ with $\left\|\bar{u}_{n}\right\| \leq 1 / n$.

Next we examine the question of which $\lambda \geq 0$ are continuum bifurcation points.
Lemma 3.5. If $\mathcal{C} \subset \Sigma$ is connected and $(u, \lambda),\left(u^{\prime}, \lambda^{\prime}\right) \in \mathcal{C}$, then $\zeta(u)=\zeta\left(u^{\prime}\right)$.
Proof. Let $(u, \lambda) \in \mathcal{C}$ and suppose that $\left(u_{n}, \lambda_{n}\right) \in \mathcal{C}$ satisfies $\left(u_{n}, \lambda_{n}\right) \rightarrow(u, \lambda)$ as $n \rightarrow \infty$. Using $g\left(u_{n}\right) \equiv \lambda K u_{n}$ we find that $g\left(u_{n}\right) \rightarrow g(u)$ in C^{1} and because $g(u)$ has finitely many transverse zeros, $\zeta\left(u_{n}\right)=\zeta\left(g\left(u_{n}\right)\right)=\zeta(g(u))=\zeta(u)$ for all n sufficiently large. This shows that $\zeta(\cdot)$ is an integer-valued continuous function on \mathcal{C} and is therefore constant on \mathcal{C}.
Corollary 3.6. For all $\lambda>0, \lambda$ is not a continuum bifurcation point.
Proof. If $\lambda>0$ is a continuum bifurcation point then there exists a connected set $\mathcal{C} \subset \Sigma$ and a sequence $\left(u_{n}, \lambda_{n}\right) \in \mathcal{C}$ such that $\left(u_{n}, \lambda_{n}\right) \rightarrow(0, \lambda)$ in E. By Lemma 3.5 there exists a $j \in \mathbb{N}_{0}$ such that $\left(u_{n}, \lambda_{n}\right) \in \Sigma_{j}$ for all n. Passing to a subsequence if necessary, we may assume without loss of generality that $\left(u_{n}, \lambda_{n}\right) \in \Sigma_{j}^{+}$for all n. By Proposition 3.2 with $\varepsilon_{n} \equiv 0$ it follows that $\lambda=0$, a contradiction.

Theorem 3.7. $\lambda=0$ is a continuum bifurcation point for (3).
Proof. For each $\lambda>0$ there is a unique $\left(u^{+}, \lambda\right) \in \Sigma_{0}^{+}$by Theorem 3.3 and Lemma 3.1. We prove that the map $\lambda \mapsto u^{+}(\lambda)\left(\right.$ with $\left.u^{+}(0)=0\right)$ from $[0, \infty) \rightarrow C^{0}$ is continuous.

Fix $\lambda \geq 0$ and let $\lambda_{n}>0$ be any sequence satisfying $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. Let $u_{n}^{+}:=u^{+}\left(\lambda_{n}\right)$. Suppose that $u^{+}(\cdot)$ is not continuous at λ, then there is a $\delta>0$ such that $\left\|u_{n}^{+}-u^{+}(\lambda)\right\| \geq \delta$ for all n. By Lemma 2.2, u_{n}^{+}is bounded in C^{0}. From $u_{n}^{+}=\lambda_{n} K g^{-1}\left(u_{n}^{+}\right)$and the compactness of K, there exists a convergent subsequence, say $u_{n_{j}}^{+} \rightarrow u^{*}$ in C^{0}. Hence u^{*} is a solution of $L u^{*}=\lambda g^{-1}\left(u^{*}\right)$. By Proposition 3.2, if $\lambda>0$ then $u^{*}=u^{+}(\lambda)$ while if $\lambda=0$ then $u^{*}=0$. Either way this contradicts the above δ-bound.

We now utilise a theorem from topological analysis to obtain connectedness results for the sets of non-trivial sign-changing solutions.

Definition 3.8. Suppose that (Z, d) is a complete metric space and that $\left\{S_{n}\right\}_{n=0}^{\infty}$ is a family of connected subsets of Z. For $S \subset Z$ define $d(z, S):=\inf _{s \in S} d(s, z)$,

$$
\begin{aligned}
S_{\mathrm{inf}} & :=\left\{z \in Z: \lim _{n \rightarrow \infty} d\left(z, S_{n}\right)=0\right\} \\
S_{\mathrm{sup}} & :=\left\{z \in Z: \liminf _{n \rightarrow \infty} d\left(z, S_{n}\right)=0\right\} .
\end{aligned}
$$

Theorem 3.9. (See [17]). Suppose that $\bigcup_{n=0}^{\infty} S_{n}$ is relatively compact in Z. If $S_{\mathrm{inf}} \neq \emptyset$, then S_{sup} is a non-empty, closed and connected subset of Z.
Theorem 3.10. Let $j \in \mathbb{N}_{0}$ be given. There exist unbounded, closed and connected sets $\mathcal{C}_{j}^{ \pm} \subset \Sigma_{j}^{ \pm} \cup\{(0,0)\}$ such that $(0,0) \in \mathcal{C}_{j}^{ \pm}$. In particular, $\Pi\left(\mathcal{C}_{j}^{ \pm}\right)=[0, \infty)$.
Proof. Let $\varepsilon_{n} \rightarrow 0$ be any positive sequence. For fixed $\nu>0$ let $S_{n}^{+, j}(\nu)$ be the maximal connected component of $C_{j}^{+}\left(\varepsilon_{n}\right) \cap\left(C^{0} \times[0, \nu]\right)$ which contains $(u, \lambda)=\left(0, \epsilon_{n} \mu_{j}\right)$ in its closure, where $C_{j}(\varepsilon)$ is defined in Theorem 2.3. Note that by Theorem 2.3, $S_{n}^{+, j}(\nu)$ contains non-trivial elements of the form (u, λ) for all $\lambda \in\left[\varepsilon_{n} \mu_{j}, \nu\right]$, provided n is sufficiently large and $\left(0, \varepsilon_{n} \mu_{j}\right) \in \overline{S_{n}^{+, j}(\nu)}$. By the compactness of $[0, \nu]$ and of the operator $K: C^{0} \rightarrow C^{0}$) it follows that $\bigcup_{n=0}^{\infty} S_{n}^{+, j}(\nu)$ is relatively compact in E. Clearly $(0,0) \in S_{\mathrm{inf}}^{+, j}(\nu)$ and so $S_{\mathrm{inf}}^{+, j}(\nu)$ is non-empty. Hence by Theorem 3.9 $S_{\text {sup }}^{+, j}(\nu)$ is non-empty, closed and connected in E.

Now, by the construction of solutions in Theorem 3.3 it follows that

$$
\left\{\left(u_{j}, \lambda\right) \in \Sigma_{j}^{+}: \lambda \in(0, \nu]\right\} \cup\{(0,0)\} \subset S_{\mathrm{inf}}^{+, j}(\nu) \subset S_{\mathrm{sup}}^{+, j}(\nu)
$$

Moreover, if $(u, \lambda) \in S_{\text {sup }}^{+, j}(\nu)$ there exists a sequence $\left(u_{n}, \lambda_{n}\right) \in S_{n}^{+, j}(\nu)$ such that $\left(u_{n}, \lambda_{n}\right) \rightarrow(u, \lambda)$ in E. Then,

$$
\begin{aligned}
&\|g(u)-\lambda K u\| \leq\left\|g(u)-g\left(u_{n}\right)\right\|+\left|\lambda_{n}-\lambda\right|\left\|K u_{n}\right\| \\
&+\lambda\left\|K\left(u_{n}-u\right)\right\|+\varepsilon_{n}\left\|u_{n}\right\| \rightarrow 0
\end{aligned}
$$

so that (u, λ) is a solution of (3). By Proposition 3.2 and Theorem 2.4 either $(u, \lambda)=(0,0)$ or $(u, \lambda) \in \Sigma_{j}^{+}$for some $j \in \mathbb{N}_{0}$.

Clearly, $S_{\text {sup }}^{+, j}(\nu) \subset S_{\text {sup }}^{+, j}\left(\nu^{\prime}\right)$ if $\nu<\nu^{\prime}$ and it follows that $\mathcal{C}_{j}^{+}:=\bigcup_{\nu>0} S_{\text {sup }}^{+, j}(\nu)$ has
the stated properties. The result for \mathcal{C}_{j}^{-}follows similarly.
Example 1. Consider a semi-linear, degenerate elliptic equation $\Delta \varphi(v)+\lambda f(v)=0$ with Dirichlet boundary conditions on an annulus $R_{1}<|y|<R_{2}$ in \mathbb{R}^{n}, [8]. Suppose that φ and f are strictly increasing, odd functions satisfying $\varphi(0)=f(0)=0$. Setting $u=f(v)$ one obtains $\Delta g(u)+\lambda u=0$, where $g(u):=\varphi\left(f^{-1}(u)\right)$. Suppose that φ and f are such that g satisfies G1-G3. Now, radially symmetric solutions satisfy $\left(r^{n-1} g(u)_{r}\right)_{r}+\lambda r^{n-1} u=0$, where $r=|y|$. Setting $x=r^{n} / n$ then yields the equivalent problem $-\left(a(x) g(u)_{x}\right)_{x}=\lambda u$ for $x \in\left(R_{1}^{n} / n, R_{2}^{n} / n\right)$, where $a(x):=$ $(n x)^{2(1-1 / n)}$, to which the results of this section apply. Such a situation occurs when $\varphi(v)=v|v|^{m-1}$ and $f(v)=v|v|^{p-1}$ for $m>p>0$.

4. Applications

4.1. Non-monotone eigenvalue problems. Here we apply our main results to problems where g is only locally monotonic near zero. We still obtain infinitely many solution sets in E parameterised by zeros together with an unbounded interval of sequential (but not continuum) bifurcation points.

Lemma 4.1. Let $\delta>0$ and suppose that $g:[0, \delta] \rightarrow[0, \infty)$ is a strictly increasing C^{1} function which is C^{2} on $(0, \delta]$ with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(\delta)>0$. If $\gamma(u)=$ $g(u) / u$ satisfies $\gamma^{\prime}(u) \geq 0$ on $(0, \delta]$ then there exists an odd, strictly increasing C^{1} extension $\bar{g}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left.g\right|_{[0, \delta]}=\left.\bar{g}\right|_{[0, \delta]}$. Moreover, if $\bar{\gamma}(u):=\bar{g}(u) / u$ then $\bar{\gamma}^{\prime}(u) \geq 0$ for all $u>0$ and $\bar{\gamma}(u) \rightarrow \infty$ as $|u| \rightarrow \infty$.
Proof. Since $u^{2} \gamma^{\prime}(u)=u g^{\prime}(u)-g(u)$ we have $g^{\prime}(\delta)>0$. Now define \bar{g} to be the odd extension of the function

$$
\left\{\begin{array}{cl}
g(u) & : \quad 0 \leq u \leq \delta \\
g(\delta)+(u-\delta) g^{\prime}(\delta)+\frac{1}{2}(u-\delta)^{2} g^{\prime \prime}(\delta) & : \quad u \geq \delta
\end{array}\right.
$$

and then for $|u| \geq \delta$ we have $u^{2} \bar{\gamma}^{\prime}(u)=\delta^{2} \gamma^{\prime}(\delta)+\frac{1}{2} g^{\prime \prime}(\delta)\left(u^{2}-\delta^{2}\right) \geq 0$.
We can now deduce the following result when g is only locally monotonic.
Theorem 4.2. For some $\delta>0$ suppose that $g:[-\delta, \delta] \rightarrow \mathbb{R}$ is a strictly increasing, odd, C^{1} function which is C^{2} on $[-\delta, \delta] \backslash\{0\}$ and $g(0)=g^{\prime}(0)=0, g^{\prime \prime}(\delta)>0$. If $\gamma^{\prime}(u) \geq 0$ on $(0, \delta]$ then there exist closed, connected sets $\mathcal{C}_{j}^{ \pm} \subset \Sigma_{j}^{ \pm} \cup\{(0,0)\}$ such that $(0,0) \in \mathcal{C}_{j}^{ \pm}$. At least one, but possibly both, of the following is true:
(1) $\mathcal{C}_{j}^{ \pm}$is unbounded,
(2) there exists a $(u, \lambda) \in \mathcal{C}_{j}^{ \pm}$such that $\|u\|=\delta$.

Furthermore, for each $\lambda>0$ there exists a sequence $u_{j} \in \Sigma$ such that $\zeta\left(u_{j}\right) \rightarrow \infty$ and $u_{j} \rightarrow 0$ in C^{0} as $j \rightarrow \infty$. In particular, every $\lambda \geq 0$ is a sequential bifurcation point and $\lambda=0$ is a continuum bifurcation point for (3).

Proof. Use Lemma 4.1 to replace (3) by $\bar{g}(u)=\lambda K u$ to which Theorems 3.10 and 3.4 apply. The result follows from the fact that solutions of $\bar{g}(u)=\lambda K u$ with $\|u\| \leq \delta$ also satisfy (3).
4.2. Degenerate Diffusion Equations. Consider a quasi-linear parabolic equations of the form

$$
\begin{equation*}
v_{t}-\left(a(x) D(v)_{x}\right)_{x}+b(x) D(v)=\lambda f(v) \tag{11}
\end{equation*}
$$

supplied with Dirichlet boundary conditions and given initial data. Such equations arise naturally in many branches of the physical and biological sciences [5, 14]. Upon setting $u=f(v)$ and defining $g(u)=D(F(u))$ (see below) one may use Theorem 4.2 to obtain information on the existence of equilibrium solutions of (11) whenever f and D are monotonic near zero. We omit the trivial proof.

Theorem 4.3. Suppose that $D, f \in C^{1}(\mathbb{R})$ are odd, strictly increasing functions such that $D(0)=D^{\prime}(0)=f(0)=0$ and $f^{\prime}(0)>0$. Let F denote the local C^{1} inverse of f near 0 . If there exists a $\delta^{*}>0$ such that $D \in C^{2}\left(0, \delta^{*}\right]$ and $u F^{\prime}(u) D^{\prime}(F(u))-$ $D(F(u)) \geq 0$ on $\left(0, \delta^{*}\right]$ then the conclusions of Theorem 4.2 hold for equilibrium solutions of (11) for each $\delta \leq \delta^{*}$ for which $(D(F))^{\prime \prime}(\delta)>0$. In particular, the latter conditions hold for all sufficiently small $\delta>0$ whenever $D, f \in C^{3}(\mathbb{R}), D^{\prime \prime}(0)=0$ and $D^{\prime \prime \prime}(0)>0$.

Example 2. Theorem 4.3 applies to a degenerate form of the Chafée-Infante problem (see [6])

$$
v_{t}-\left(v|v|^{m}\right)_{x x}=\lambda v\left(1-v^{2}\right), \quad m>0
$$

Example 3. Consider the slow diffusion problem

$$
u_{t}-\left(a(x)[\exp (-1 / u)]_{x}\right)_{x}=\lambda u
$$

with Dirichlet boundary conditions, where $g(u):=[\exp (-1 / u)]$ denotes the odd extension of $\exp (-1 / u)$ for $u>0$. Theorem 4.3 applies to the associated steadystate problem. Note however, that the global results of Section 3 do not apply even though g is globally monotonic due to the failure of the coercivity condition G3. Due to the flat nature of g at $u=0$, the results of [1] do not apply to this equation.
4.3. Boundary-value differential-algebraic equations. We can also use the above results to find steady-states of parabolic systems

$$
\begin{aligned}
u_{t}+L u & =\lambda F(u, v), \quad u(0, t)=u(1, t)=0 \\
v_{t} & =G(u, v)
\end{aligned}
$$

or equivalently, the boundary-value differential-algebraic equation (DAE)

$$
\begin{equation*}
L u=\lambda F(u, v), G(u, v)=0, \quad u(0)=u(1)=0 \tag{12}
\end{equation*}
$$

Problems of this nature are considered in [10], motivated by interactions between diffusive and non-diffusive species. We have the following theorem regarding solutions of (12).

Theorem 4.4. Suppose that F and G are C^{r} functions with $r \geq 4$ such that $F(0,0)=G(0,0)=0, G_{v}(0,0)=G_{v v}(0,0)=0, F(-u,-v)=-F(u, v)$ and $G(u,-v)=-G(-u, v)$. If $G_{u} F_{v} G_{v v v}<0$ at $(0,0)$ then $\lambda=0$ is a continuum bifurcation point to a branch of positive solutions of (12). There are countably many sets of non-trivial solutions $\mathcal{C}_{j} \subset C^{2}(\bar{\Omega}) \times C^{0}(\bar{\Omega}) \times \mathbb{R}$ such that $\mathcal{C}_{j} \cup\{(0,0,0)\}$ is connected and if $(u, v, \lambda) \in \mathcal{C}_{j}$ then u and v have j zeros in Ω. Every $\lambda \in(0, \infty)$ is a sequential bifurcation point, but no element of $(0, \infty)$ is a continuum bifurcation point.
Proof. Apply the implicit function theorem to $G(u, v)=0$ and solve this constraint as $u=U(v)$, where $U(0)=U^{\prime}(0)=U^{\prime \prime}(0)=0$ and $U^{\prime \prime \prime}(0)=-G_{v v v}(0,0) / G_{u}(0,0) \neq$ 0 . Then (12) is reduced to $L U(v)=\lambda F(U(v), v)$, so now set $w=F(U(v), v)$. This can be solved by the inverse function theorem for $v=V(w)$ such that $V(0)=0, V^{\prime}(0)=1 / F_{v}(0,0)$ and $V^{\prime \prime}(0)=-F_{v v}(0,0) / F_{v}(0,0)^{3}$. Now, (12) is locally equivalent to $L U(V(w))=\lambda w$, so we set $g(w)=U(V(w))$.

Now, the hypotheses on F and G ensure that U and V are odd functions, so that $g(w)$ is also odd, now set $\gamma(w)=g(w) / w$. Differentiating, we see that $g(w)=$ $\xi w^{3}+o\left(w^{3}\right)$ where $\xi=-G_{v v v} G_{u} F_{v} /\left(G_{u}^{2} F_{v}^{4}\right)>0$ and where each of these derivatives is evaluated at $(u, v)=(0,0)$. Hence there is a $\delta>0$ such that $g(w)>0, \gamma^{\prime}(w)>0$ on $(0, \delta]$ and $g^{\prime \prime}(\delta)>0$. One can now apply Theorem 4.2 to $L g(w)=\lambda w$.

Example 4. The hypotheses of Theorem 4.4 are satisfied by the steady-state problem for the reaction-diffusion system

$$
\begin{aligned}
u_{t}-u_{x x} & =\lambda \sin v, \quad u(0, t)=u(1, t)=0, \\
v_{t} & =u+u^{2} v-v^{3} .
\end{aligned}
$$

Remark 2. Fully non-linear elliptic equations of the form

$$
\begin{equation*}
L u=f(u, L u), \quad u(0)=u(1)=0 \tag{13}
\end{equation*}
$$

can be written as a boundary-value DAE by setting $v=L u, F(u, v)=v$ and $G(u, v)=f(u, v)-v$. Problems of this type are studied, for instance, in [16]. A
solution of (12) when $\lambda=1$ provides a solution of (13) and these can be obtained using Theorem 4.4 with suitable restrictions on f.

References

[1] A. Ambrosetti, J. Garcia-Azorero, and I. Peral, Quasilinear equations with a multiple bifurcation, Differential and Integral Equations 10 (1997), no. 1, 37-50.
[2] D. Aronson and L.A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Differential Equations 39 (1981), 378-412.
[3] H. Berestycki, On some nonlinear Sturm-Louiville problems, J. Differential Equations. 26 (1977), 375-390.
[4] H. Berestycki and M.J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations 134 (1997), 1-25.
[5] K.P. Hadeler, Free boundary problems in biology, in Free Boundary Problems: Theory and Applications Vol.II, eds. A. Fasano and M. Primicerio, Pitman Advanced Publishing Program, Pitman, New York, 1983.
[6] D. Henry, Geometrical theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, New York, 1981.
[7] T. Kato, Perturbation theory for linear operators, vol. Corrected 2nd Edition, SpringerVerlag, New York, 1980.
[8] M.K. Kwong and L. Zhang, Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulus, Differential Integral Equations 4 (1991), 583-596.
[9] R. Laister and R. E. Beardmore, Transversality and separation of zeros in second order differential equations, Proc. AMS., To appear.
[10] M. A. Lewis, Spatial coupling of plant and herbivore dynamics:the contribution of herbivore dispersal to transient and persistant "waves" of damage, Theoretical Population Biology 45 (1994), 277-312.
[11] P.L. Lions, Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations, J. Differential Equations 53 (1984), no. 3, 362-386.
[12] M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, N.J., (1967).
[13] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.
[14] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, and A.P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Expositions in Mathematics, 19, Walter de Gruyter, Berlin, 1995.
[15] C.A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. 45 (1982), 169-192.
[16] S. C. Welsh, A priori bounds and nodal properties for periodic solutions to a class of ordinary differential equations, J. Math. Anal. Appns. 171 (1992), 395-406.
[17] G. T. Whyburn, Topological analysis, Princeton University Press, 1964.
Dept. of Mathematics, Imperial College, South Kensington, London, SW7 2AZ.
E-mail address: r.beardmore@ic.ac.uk
Dept. of Mathematics, UWE, Frenchay Campus, Bristol.
E-mail address: robert.laister@uwe.ac.uk

[^0]: Received by the editors May 1, 2002.
 1991 Mathematics Subject Classification. 34A09, 34B60, 35B32, 35J60, 35J70.
 Key words and phrases. Degenerate elliptic equations, sequential and continuum bifurcations, differential-algebraic equations, degenerate diffusion.

