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Abstract. We study the codimension-one and -two bifurcations of the Ornstein–Zernike equa-
tion with hypernetted chain (HNC) closure with Lennard–Jones intermolecular interaction potential.
The main purpose of the paper is to present the results of a numerical study undertaken using a
suite of algorithms implemented in MATLAB and based on pseudo arc-length continuation for the
codimension-one case and a Newton-GMRES method for the codimension-two case. Through care-
ful consideration of the results of our computations, an argument is formulated which shows that
spinodal isothermal solution branches arising in this model cannot be reproduced numerically. Fur-
thermore, we show that the existence of an upper bound on the density that can be realized on a
vapor isothermal solution branch, which must be present at a spinodal, causes the existence of at
least one fold bifurcation along that vapor branch when density is used as the bifurcation param-
eter. This provides an explanation for previous inconclusive attempts to compute solutions using
Newton–Picard methods that are popular in the physical chemistry literature.
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1. Introduction. The subject of this paper is the Ornstein–Zernike (OZ) equa-
tion that was presented almost a century ago to model the molecular structure of a
fluid at varying densities [18]:

(1.1) h(‖x‖) = c(‖x‖) + ρ

∫
R3

h(‖x − y‖)c(‖y‖)dy.

Here, x,y ∈ R3 are spatial coordinates and due to the assumed isotropy of the fluid
we need only the radial coordinate r = ‖x‖, where ‖ · ‖ is the Euclidean distance
function. The parameter ρ is the mean particle density of the fluid at temperature
T , where β = 1/(kBT ) will be used to denote the Boltzmann factor and u(r) the
intermolecular potential, a typical example of which is given below. The total (h)
and direct (c) correlation functions yield the indirect correlation function of the fluid,
γ = h− c, and the radial distribution function g(r) = 1 + h(r) is the pair correlation
function of molecules in the fluid.

The last two years or so have seen an increased use of continuation algorithms in
liquid state theory. This can be seen both in [10, 9] in the context of density functional
theory and in a study of the OZ equation [15]. The authors of [10, 9] make the express
comment that continuation algorithms are needed to track phase transitions, and the
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purpose of this paper is to analyze the correspondence between the solutions of the OZ
equation and its discretization using continuation algorithms. In particular, we show
that for the OZ equation with hypernetted chain closure, a term that is defined below,
there is no finite-dimensional projection of the equations and hence no algorithm that
can approximate physically meaningful solutions when seeking a spinodal, a precursor
to a phase transition.

1.1. Closures. In order to form a well-posed mathematical system of equations
from (1.1) that can be solved, at least in principle, we impose a closure relationship.
This is an algebraic equation or pointwise constraint that augments (1.1) and which
is deemed to hold throughout the fluid.

Some closures are structured so that the total correlation function is a perturba-
tion of the Mayer f-function that is defined by f(r) = −1 + e−βu(r). These closures
are obtained beginning with the observation that there is a function B(r) such that

(1.2) h = −1 + e−βu+h−c+B

holds throughout the fluid; B is called the Bridge function [6].
Due to the fact that the potential u will have singularities that may prevent

−βu+h− c from being well defined, let us rewrite (1.2) in the form h = −1+ e−βu +
e−βu

(
−1 + eh−c+B

)
. The hypernetted chain (HNC) closure that interests us dates

from the late 1950’s (see [23]) and is obtained by setting B(r) to zero, something that
is not possible to justify on physical grounds in any generality. Thus, the OZ equation
with HNC closure (OZ-HNC) is (1.1) coupled to

(1.3) h = f + e−βu · (−1 + eh−c).

Such an approximation suffers from thermodynamic inconsistency, the property that
different routes to computing thermodynamic quantities such as compressibility and
pressure yield different results. This is often seen as a fundamental flaw of theories
based on closures like HNC.

Another often-studied problem in the physical chemistry literature (again see
[6] for background and further references) is the OZ equation with Percus–Yevick
(PY) closure [19]. This also dates from the 1950’s and is obtained by setting B =
ln(γ + 1) − ln γ, leading to the PY closure

(1.4) h = f + e−βu · (h− c).

We do not study this particular thermodynamically inconsistent form here. These
and other closures have been in use for around thirty years, as explained in the review
[6], and combinations of different closures have also been proposed, some of which are
reviewed in the latter reference, but we have chosen to concentrate on OZ-HNC.

The HNC and PY closures can be written in a general form involving the potential,
temperature, and the indirect correlation function through a nonlinearity G, say, as
follows:

(1.5) h = f + e−βuG(h− c), G(0) = 0.

The suite of algorithms we have developed are able to solve (1.1) and (1.5) for any
function G with β and ρ as bifurcation parameters. Moreover, solution branches
obtained by varying ρ but holding β fixed are called isotherms; those obtained by
fixing ρ but varying β are isochores.
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1.2. Local existence. Note that the OZ equation with closure of the form (1.5)
can be written as a single integral equation

(1.6) γ = ρ(f + e−βuG(γ)) ∗ (f + e−βuG(γ) − γ),

and in the remainder we shall use Nβ(γ) to denote the operator formed by the right-
hand side of (1.6), so that this integral equation can be written γ = ρNβ(γ) for
brevity.

The following basic existence theorem for (1.6) can be easily proven using the
implicit function theorem, but we state it here without proof.

Theorem 1. If G(γ) = −1 + eγ , β > 0, and f ∈ L1(R3),∩L∞(R3), then there is
a ρ′ > 0 such that (1.6) has a solution γ ∈ L1(R3) ∩ L∞(R3) for each 0 ≤ ρ < ρ′.

As a result, one generally requires the short-range condition that f is integrable
and bounded over R3 for β > 0, a property that follows from the assumption that∫∞
1

r2u(r)dr < ∞ such that u is measurable on (0,∞) and continuous on a half-
neighborhood of zero and limr→0+ u(r) = +∞.

Our algorithms are implemented with the assumption that u is smooth on (0,∞);
we do not perform any computations where the potential is nonsmooth, although it
is common in the literature to do so [6, 13, 16]. Indeed, all computations presented
here use the Lennard–Jones (LJ) 6-12 potential,

u
LJ

(r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
,

where σ is particle diameter and ε controls the well-depth. In accordance with [12], we
shall express thermodynamic quantities such as density and temperature in reduced
units, ρ∗ = ρσ3, T ∗ = kBT/ε = 1/(εβ), although σ = ε = 1 hold throughout the
paper so that ρ = ρ∗ and T ∗ = 1/β.

1.3. Spinodals. Let us define the inverse isothermal compressibility of a fluid

(1.7) χ−1(c, ρ) := 1 − ρ

∫
R3

c(‖x‖)dx.

This quantity plays a fundamental role in the solution of (1.1) and (1.5) for the
following reason.

Definition 1. Let β > 0 be fixed. A spinodal is said to occur in the OZ-HNC
equation (1.1) and (1.5) at ρ = ρsp if there is a sequence (hn, cn, ρn) of solutions such
that ρn → ρsp as n → ∞ and χ−1(cn, ρn) → 0.

As the temperature is reduced the separation of two phases in the fluid, one
liquid and one vapor, begins with the creation of two spinodals at a critical value of
temperature and density, Tc and ρc. Thus the search for two thermodynamic phases
begins with the search for a codimension-two point at which a single critical solution
can be found, with T = Tc and ρ = ρc, say, at which inverse isothermal compressibility
is zero.

One consequence of the existence of two spinodals that lie on vapor and liquid
isotherms is a region of densities between the two where no solution of (1.6) exists; this
region is sometimes called a no-solution region. Several analyses based on numerical
solutions of the discretized OZ equations appear to have established that a no-solution
region exists [24, 3, 2, 17, 22], and the purpose of this paper is to investigate these
claims further, noting that none of the cited references use bifurcation algorithms in
their studies. Note in particular [20, Fig. 4] whereby a conjectured series of solution
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branches have been drawn; we shall demonstrate that this figure is essentially correct
but that there may well be more fold bifurcations present than are shown in [20].

Although we shall show that we are not strictly able to locate phase transitions
by applying continuation algorithms to (1.6), we shall use the following suggestive
terminology. Isotherms that contain the low-density base solution of (1.6) given by
h = f, c = f , and ρ = 0 will be called vapor branches throughout. If there are two
isothermal solution branches, the one associated with higher densities will be called
the liquid branch. We shall also use the prefix discrete to denote that these terms
apply to solution branches of a discretization of (1.6).

1.3.1. Fold bifurcations and pseudospinodals. Let us consider for a moment
the following definition of fold bifurcation, noting that it also incorporates solution
branches that intersect in pitchfork or transcritical bifurcations.

Definition 2 (fold bifurcation). Let X be a Banach space. The nonlinear
equation F (γ, ρ) = 0, where F : X × R → X, is said to possess a fold bifurcation at
ρFB if there is a γFB ∈ X and at least two distinct sequences (γn) ∈ X and (γn) ∈ X
such that for some sequence (ρn) ⊂ R

(i) F (γn, ρn) = 0 and F (γn, ρn) = 0 for all n,
(ii) ρn < ρFB for all n, and
(iii) limn→∞(γn, ρn) = limn→∞(γn, ρn) = (γFB , ρFB) ∈ X × R.

The reason for introducing this definition is that while phase transitions begin
with a search for spinodals, it was noted as long ago as 1968 for the PY closure [1] (see
[1, Fig. 1] in particular) that fold bifurcations could occur where one might anticipate
the existence of spinodals. As a result, fold bifurcations in the context of (1.6) are
often called pseudospinodals, although square-root branch points [2] are also used. Let
us again remark that Definition 2 encompasses a greater class of solution curves than
simply those with the typical folded structure at a bifurcation point, but the theorems
later in the paper are only able to demonstrate the existence of a fold bifurcation in
the sense of Definition 2.

Using a standard codimension-one formulation of (1.6), we shall compute curves
that illustrate how fold bifurcations of (1.6) vary as a function of temperature and
density, and these rather resemble phase diagrams and may be thought of as an
approximation of the boundary of the region of liquid-vapor coexistence.

The basic Newton method has been seen as the most appropriate algorithm for
studying (1.6), which is why continuation algorithms were not used to study the OZ
equation until very recently [15]. Moreover, the various codimension-two problems
associated with OZ have yet to be tackled directly in the physical chemistry liter-
ature; hence this paper addresses these issues. This is perhaps a little surprising
given the debate that took place in [11, 5, 4, 7] regarding the errors committed when
employing inappropriate numerical techniques. Moreover, the study of the corre-
spondence between analytical and numerical solutions of the OZ equation with PY
closure performed in [7] shows surprising discrepancies that, to the best of the authors’
knowledge, have not received adequate attention in the literature.

Typical behavior: Unphysical isotherms part I. In anticipation of the re-
sults to follow, in Figure 1.1 we have plotted a locus of fold bifurcations for (1.6)
that has been computed for an LJ fluid using a codimension-one formulation of the
OZ-HNC equation; note its resemblance to a phase diagram. (The meaning of the
parameter R = 10σ that appears in the caption of this figure is explained later in the
paper.)
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Fig. 1.1. (LJ potential, HNC closure, R = 10σ with 212 + 1 mesh points.) A locus of fold
bifurcations showing liquid and vapor branches created at a transcritical bifurcation. Below the
parabolic curve there are regions where no solution exists bounded by two fold bifurcations that occur
as ρ is varied and β is fixed; one occurs on the liquid branch and one occurs on the vapor branch
(see Figure 1.2).

*

vapour

1/T*

Fig. 1.2. (LJ potential, HNC closure, R = 10σ, 212 + 1 mesh points.) (Left) Two supercritical
branches (at (1)) touch (near (2)) and exchange singularities: Inverse compressibility plotted against
density with label (1) β = 0.696, label (2) β = 0.72; two more liquid-vapor isothermal pairs are shown
with lower temperatures at β = 0.725 and 0.73. (Right) Three isochores showing fold bifurcations at
low temperatures; density is fixed at ρ = 0.1, 0.2, 0.3.

In Figure 1.2 (left) we have computed a set of isothermal solution branches
that show density plotted on the horizontal axis against inverse isothermal com-
pressibility on the vertical axis; to produce each curve, temperature is lowered and
a pair of computations is performed, and the resulting figure is an unfolding of
the apex from Figure 1.1. Label (2) in Figure 1.2 (left) sees the creation of two
fold bifurcations or pseudospinodals that arise due to a collision of two solution
branches, one of which is a vapor branch with positive compressibility, but the other
has negative compressibility and is therefore not a branch of physically meaningful
solutions.

1.4. Notation. Given a nonlinear mapping N(γ) on a Banach space X that
contains elements γ and h, dN(γ)[h] denotes the Fréchet derivative and BL(X) is the
space of bounded, linear mappings from X to itself. We shall write Nβ(γ) to emphasize
the dependence of N on a parameter β, but we shall suppress the subscript otherwise.
The dual space of all bounded linear functionals on X is written X∗.
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Numerical objects that correspond to infinite-dimensional objects will be written
using a bold font, so that γ will be a vector that corresponds to a correlation function
γ projected onto a finite-dimensional subspace of X. The set {ej}nj=0 is used to denote

the standard basis vectors of Rn+1. We shall write BR(0) = {x ∈ R3 : ‖x‖ < R} for a
ball in R3, and 〈u,v〉 is the standard Euclidean inner product of vectors u,v ∈ Rn+1.

We depart a little from convention by using Lp(R3) to denote the space {u :
R3 → R :

∫
R3 |u(x)|pdx < ∞}, where p ≥ 1, and C0(R3), C∞

0 (R3), and L∞(R3) are
defined analogously (the point is that the range of functions in these spaces is always
R). By CLip(Ω) for a domain Ω ⊂ R3 we understand the space {u ∈ C0(Ω) : ∃K >
0 s.t. |u(x) − u(y)| ≤ K‖x − y‖} endowed with a standard norm.

We will use a majuscule to represent the Fourier transform of a minuscule, as in

F(c)(s) := C(s) =

∫
R3

c(x)eix·sdx.

The convolution of radially symmetric functions can be written using the convolution
theorem and the Hankel transform H, the Fourier transform of radially symmetric
functions that is given by

H(a)(s) = 4π

∫ ∞

0

sinc(rs)r2a(r)dr

so that H−1(a)(s) = 1
2π2

∫∞
0

sinc(rs)r2a(r)dr. Thus we may define a convolution
operator by a ∗ b = H−1((Ha) · (Hb)), where a, b : [0,∞) → R are given functions.

2. Observations on the OZ-HNC equation. Throughout the remainder of
the paper let us consider (1.6) with the HNC closure G(γ) = −1 + eγ :

(2.1) γ = ρ(f + e−βu(r)(−1 + eγ)) ∗ (f + e−βu(r)(−1 + eγ) − γ).

Formulation (2.1) is advantageous from a theoretical point of view because G can be
regarded as a function that maps L1(R3) ∩ L∞(R3) to itself, a property that is not
shared by either of the functions γ �→ eγ or γ �→ γ − 1. As this paper is written from
a computational perspective, (2.1) will be rewritten in the more common form

γ = ρ(−1 + e−βu(r)eγ) ∗ (−1 + e−βu(r)eγ − γ).

2.1. Spinodals: Bifurcations at infinity in L1(R3). Applying the Fourier
transform to (1.1), we obtain the quadratic algebraic equation that holds almost
everywhere,

(2.2) H(s)(1 − ρC(s)) = C(s),

where s ∈ R is the wave number and H and C are the Fourier transforms of h and c,
respectively.

Lemma 2.1. There is no pair (h, c) ∈ L1(R3) × L1(R3) that satisfies (1.1) and
χ−1(c, ρ) = 0.

Proof. Suppose that a solution (h, c) of (1.1) exists at a given ρ and that
χ−1(c, ρ) = 0. Then 1 = ρC(0) = ρ

∫
R3 cdx but (2.2) yields (on allowing s → 0)

H(0) · (1 − ρC(0)) = C(0) =⇒
∫

R3

hdx · χ−1(c, ρ) =

∫
R3

cdx = 0,
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which is a contradiction.
Suppose that an isothermal solution branch of (1.1) and (1.5) exists (call it C) and

suppose that it lies in L1(R3)×L1(R3)×R. Suppose also that there is a sequence of
low-density solutions in C, so that C connects to the vapor base solution where ρ = 0
and therefore χ−1(c, ρ) is positive along the low-density part of C.

Now suppose that C contains a spinodal in the sense that there is a sequence
(hn, cn, ρn) ∈ C such that ρn → ρsp > 0 and limn→∞ χ−1(cn, ρn) = 0. From (2.2)
upon setting s = 0 we find∫

R3

hndx · χ−1(cn, ρn) =

∫
R3

cndx → 1/ρsp,

and we must conclude that
∫

R3 hn(‖x‖)dx → ∞ as n → ∞. Thus, a spinodal is
associated with a bifurcation from infinity in L1(R3). Let us record this in a lemma.

Lemma 2.2. Suppose that (hn, cn, ρ) ⊂ L1(R3)×L1(R3)×R is a spinodal sequence
that accumulates at a nonzero density ρ = ρsp; then ‖hn‖L1(R3) → ∞ as n → ∞.

Thus, the fact that a spinodal sequence is a bifurcation at infinity in an L1(R3)-
norm is a property of the OZ equation alone; whether or not a spinodal is actually
present depends essentially on the nature of the closure relationship used in (1.5). For
example, the following simple lemma shows that the HNC closure leads to the bound-
edness of h in the L2(R3)-norm at a spinodal, provided that the direct correlation
function c in (1.1) is well behaved.

Lemma 2.3. Suppose that u ∈ L1(R3\Bε(0)) for some ε > 0 and (h, c) solves
(1.1) and (1.3) such that ‖h‖L∞ ≤ M and ‖c‖L1 + ‖c‖∞ ≤ M . Then there is a
KM > 0 such that

(2.3)

∫
R3

h(‖x‖)2dx ≤ 4πε2M2

3
+

1

KM

∫
‖x‖≥ε

(βu + c(‖x‖))dx.

Hence h ∈ Lp(R3) for all 2 ≤ p ≤ ∞.
Proof. If we define the function F (x) = ln(x + 1) − x for all x > −1, then

F (0) = 0, F ′(0) = 0, and F ′′(x) = −1/(x + 1)2 < 0 so that F is concave. Clearly, for
each M > 0 fixed, there is a KM > 0 such that F (x) ≤ −KMx2 for all x such that
−1 < x ≤ M . Now, if (h, c) solves (1.1) and (1.3), then from (1.3) we deduce

KM

∫
‖x‖≥ε

h2dx ≤ −
∫
‖x‖≥ε

F (h)dx =

∫
‖x‖≥ε

(βu + c)dx

because h(‖x‖) > −1 if ‖x‖ > ε from the HNC closure. Hence,∫
R3

h2dx ≤
∫
‖x‖≤ε

h2dx +
1

KM

∫
‖x‖≥ε

(βu + c)dx

≤ M2meas{x : ‖x‖ ≤ ε} +
1

KM

∫
‖x‖≥ε

(βu + c)dx,

and the result follows.
We can now use the bound from Lemma 2.3 to obtain the following result which

states that if a spinodal sequence exists and the correlation functions stay uniformly
bounded, and the direct correlation function that is known to be integrable is in
fact absolutely integrable, then there are functions h0 ∈ L2(R3)\L1(R3) and c0 that
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together satisfy the OZ equation. Any function h0 ∈ L∞(R3) that satisfies an almost-
everywhere bound of the form

C

r3
< |h0(x)| < C ′

r(3+δ)/2
(a.a. r ≥ R)

for constants C,C ′, and R, where δ ∈ (0, 3) is arbitrary and r = ‖x‖2, the Euclidean
length of x, satisfies h0 ∈ L2(R3)\L1(R3), and this may give us some clue as to how
the total correlation function behaves at a spinodal.

Lemma 2.4. Suppose that ρsp is a density associated with a spinodal sequence
(hn, cn, ρn) ∈ L1(R3) × L1(R3) × R for n ≥ 1 and there is an M > 0 such that
‖hn‖L∞ ≤ M and ‖cn‖L1 + ‖cn‖L∞ ≤ M . Then there are functions h0 ∈ L2(R3)\
L1(R3) and c0 ∈ L2(R3) ∩ L∞(R3) such that

h0 = c0 + ρsp(h0 ∗ c0) and χ−1(c0, ρsp) = 0.

Proof. (In this proof, although all functions are defined on R3, we assume them
to be radially symmetric.) The result follows from the continuity of the convolu-
tion operator ∗ with respect to weak convergence. For if (hn, cn, ρn) has the stated
properties, then, although ‖hn‖L1(R3) → ∞ as n → ∞, there are bounds of the form

‖hn‖L∞ ≤ M and ‖cn‖L1 + ‖cn‖L∞ ≤ M

that come from the definition of an admissible spinodal sequence. From Lemma 2.3
we may assume that ‖hn‖L2 ≤ M . We can now apply the Banach–Alaoglu theorem
to extract weak and weak* convergent subsequences to find an h0 ∈ L2 and a c0 ∈
L∞ ∩ L2 such that

hn ⇀ h0 in L2, cn ⇀ c0 in L2, and cn
∗
⇀ c0 in L∞

as n → ∞, using (L1)∗ ∼= L∞ and the fact that (cn) ⊂ (L1)∗, which is a bounded
sequence.

Now suppose that φ ∈ C∞
0 (R3) has support on some closed ball Ω and let ε > 0.

From the symmetry properties of convolution there is an N0 such that

|〈φ, h ∗ c〉 − 〈φ, hn ∗ cn〉| = |〈h ∗ φ, c− cn〉 − 〈(hn − h) ∗ φ, cn〉|

= |〈h ∗ φ, c− cn〉 − 〈(hn − h) ∗ φ, cn − c〉 − 〈(hn − h) ∗ φ, c〉|

≤ ε + |〈(hn − h) ∗ φ, cn − c〉| + ε

for all n ≥ N0.
Suppose now that un := hn − h0 ⇀ 0 in L2 and vn := cn − c0 ⇀ 0 in L2 as

n → ∞; then un ∗ φ has support in 2 ·Ω, where 2 ·Ω = {2x : x ∈ Ω}. Moreover, from
the Cauchy–Schwarz inequality

ess supx∈2·Ω |(un ∗ φ)(x)| ≤ ‖un‖L2‖φ‖L2 < ∞

and

|(un ∗ φ)(x1) − (un ∗ φ)(x2)| ≤ meas(2 · Ω)1/2‖φ‖C1‖x1 − x2‖‖un‖L2 ,

and we may assume that un ∗ φ is continuous and uniformly bounded. Clearly the
Lipschitz norm ‖un ∗φ‖CLip(2·Ω) is bounded and because the embedding CLip(2 ·Ω) ⊂
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Fig. 2.1. (LJ potential, HNC closure, 212 + 1 mesh points, and β = 0.75.) Two computations
with different cut-off parameters R = 50σ (dashed line) and 80σ (full line). Spinodal-like behavior
is clearly visible, and note the presence of multiple fold bifurcations.

C0(2 · Ω) is compact and un ⇀ 0 in L2, it follows that un ∗ φ ⇀ 0 in L2, and so we
may assume that un ∗ φ → 0 uniformly on 2 · Ω.

Hence | 〈un ∗ φ, vn〉 | ≤ ‖un ∗ φ‖C0(2·Ω)‖vn‖L2 and on setting un := hn − h0,
vn := cn − c0 we have shown that hn ∗ vn ⇀ h0 ∗ v0 in L2 because C∞

0 (R3) is dense
in L2(R3). Since −hn + cn + ρnhn ∗ vn = 0 for all n we find that the pair (h0, c0)
satisfies the OZ equation.

To obtain the zero inverse compressibility of this pair, because χ−1(cn, ρn) =
1 − ρn

∫
R3 cn(‖x‖)dx → 0 it suffices to show that

∫
R3 cndx →

∫
R3 c0dx, which itself

follows if
∫

R3 cnφdx →
∫

R3 c0φdx for all φ ∈ L∞. Now, cn ∈ L1(R3) can be viewed as a
continuous linear functional in (L∞)∗ acting via integration, as in cn(ψ) =

∫
R3 cnψdx

and ‖cn‖(L∞)∗ ≤ ‖cn‖L1 . The result now follows by applying the Banach–Alaoglu
theorem and choosing φ = 1.

One might call the functions h0 and c0 spinodal semisolutions because, although
they satisfy the OZ equation (1.1), they may well not satisfy the constraint (1.3).
Establishing the existence of the a priori bounds needed for Lemma 2.4 depends on
the closure (1.5) and is not a straightforward task. However, given that (1.1) is a
description of the fluid that holds under any thermodynamic conditions, it is essential
that conditions exist such that (1.1) continues to hold whether or not the fluid is at
a spinodal.

Computing spinodals: Unphysical isotherms part II. The property of
Lemma 2.3 of having a sequence of total correlation functions (hn) that are L2(R3)-
bounded but divergent in L1(R3) will cause difficulties for any numerical discretization
of (1.1) and (1.5). Indeed, it will force such a discretization to possess uniform a priori
bounds because of the equivalence of different norms on finite-dimensional spaces.

This simple observation ensures that admissible spinodal sequences cannot be
reproduced easily with a computational procedure, and this may go some way to
explaining the claims made in [2, 20] that apparent spinodals in numerically computed
solutions are not true spinodals. Moreover, if Lemma 2.3 does provide a description
of the fluid through a spinodal, the resulting computations must behave in a manner
that produces nonphysical results.

We have illustrated this problem in Figure 2.1 containing two plots. The left-hand
figure shows the L1(R3)-norm of h plotted on a log scale against density where a very
rapid change in this norm takes place over a very small density interval. This is clear
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numerical evidence of the existence of a spinodal, and the right-hand plot shows the
numerically obtained inverse compressibility χ−1 against density, with this variable
passing through zero, which seems to confirm this observation. However, yet again
we find that there are physically meaningless solutions with negative compressibility.

Clearly, the values of χ−1 are very close to zero along the vertical part of the
branch in the left-hand plot of Figure 2.1. However, a number of fold bifurcations
can be seen (three in this plot) and there is a final fold after which the density
monotonically decreases before finally heading toward zero as the norm grows further;
this is also physically meaningless behavior. We shall give a tentative explanation of
this behavior later in the paper and prove that the existence of a spinodal along a
vapor branch in a discretization of (1.1) with the HNC closure must yield the existence
of a fold bifurcation.

Remark 1. The existence of an apparent solution whereby χ−1(c, ρ) = 0 is trou-
blesome in light of Lemma 2.1 and is an artifact of the discretization used to solve
(2.1). However, the discretization procedure used to produce Figure 2.1 is standard
in the physical chemistry literature: as described in the following section, the fluid is
truncated to a ball of radius R, called the cut-off parameter, and (2.1) is solved as
an integral equation on the resulting finite domain. In Figure 2.1 we have used two
different values for R—one of R = 50σ and one of R = 80σ, where σ is the particle
diameter, here taken to be 1.

3. Computational procedures.

3.1. The cut-off parameter R. In all of the liquid-state physics literature
that we have cited (see [24, 3, 17, 2, 15], for example), one solves (1.1) numerically by
first truncating the region of integration to a finite region, and so we also adopt this
procedure. So, rather than solving (1.1), one seeks solutions of a windowed integral
equation,

(3.1) h(r) = c(r) +

∫
R3

[X
R
h](‖x − y‖)[X

R
c](‖y‖)dy (0 ≤ r ≤ R),

where X
R

is the windowing operator:

(X
R
v)(x) =

{
v(x) : ‖x‖ ≤ R,

0 : otherwise.

The region of integration in (3.1) is therefore finite, which permits a straightforward
method of discretization to be applied to (3.1) in tandem with the HNC constraint.

Clearly, X
R

is a projection operator in the sense that X
R
(X

R
(u)) = X

R
(u) for

all u ∈ L1(R3), and so if we set hR = X
R
h and cR = X

R
c, (3.1) is equivalent to

(3.2) hR = cR + ρX
R
(hR ∗ cR),

so that when we take the Fourier transform of (3.2) we obtain a relationship involving
convolution with the transform of the windowing operator applied to the constant
function that is identically one, here denoted 1,

(3.3) HR = CR + ρX̂
R
(1) ∗ (HR · CR),

where X̂
R
(1)(s) = (2R)−1/2s−3/2J3/2(Rs) is a certain Bessel function.

The point of this is the Fourier transform of the windowed OZ equation does
not lead to an algebraic equation but rather to a convolution equation with a fixed
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Fig. 3.1. (LJ potential, HNC closure, R = 20σ, 100σ, 200σ, β = 0.75, and 213 + 1 mesh points.)
An illustration of the high sensitivity of the bifurcation diagram to changes in the windowing pa-
rameter R near an apparent spinodal (marked by circles). (Left) Inverse compressibility against ρ∗.
(Right) L1(R3)-norm of h against ρ∗.

kernel, and this makes it difficult to define a compressibility functional of the windowed
problem (3.1) with the correct qualitative properties. For example, the argument of
Lemma 2.1 breaks down when the cut-off procedure is applied, and so the relationship
between spinodals and bifurcations from infinity is no longer apparent.

Moreover, if one still defines inverse compressibility in the sense of (1.7), then
it may well be possible to realize L1(R3) solutions of the windowed OZ equation
(3.1) with zero inverse compressibility. This is illustrated in Figure 3.1 (left), where
two regions have been circled that indeed appear to contain numerically computed
solutions with zero inverse compressibility.

Based on Figure 3.1 a further comment can be made in terms of the order of
convergence of approximate solutions of (3.1) and (1.5) in a suitable norm as R → ∞.
One needs estimates of ‖h − X

R
h‖Z in some space Z, and, bearing in mind the

L1(R3)-divergence at a spinodal, the bounds

‖h−X
R
h‖Z ≤

{
1/(4πR2)‖h−X

R
h‖L1(R3) = o(R−2),

1/(4πR)1/2‖h−X
R
h‖L2(R3) = o(R−1/2)

apply with Z = L1(0,∞) if h ∈ L1(R3) ∩ L2(R3).
One may subsequently anticipate a degradation of the convergence of approximate

solutions with respect to R as one nears a spinodal. Indeed, the relatively poor
convergence of the bifurcation picture with respect to R is illustrated in Figure 3.1,
where a computation is made along an apparent near-spinodal solution branch. Three
choices are used, R = 20σ, 100σ, and 200σ, recalling that the particle diameter σ is
1, where only the larger two of the values resolve a number of bifurcations that seem
to be missed when the smaller value is used for R.

3.2. Numerical implementation of OZ-HNC. Suppose that v : [0,∞) → R

is a given function, and define the windowed Hankel transforms

H
R
v = X

R
H(X

R
v) and H−1

R
v = X

R
H−1(X

R
v);

we then finally arrive at the equation that is to be solved as part of our computational
study:

(3.4) γ = ρH−1
R

[H
R
(f + e−βuG(γ)) · H

R
(f + e−βuG(γ) − γ)],
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which is the windowed analogue of (1.6). Now let us briefly explain our discretization
of (3.4). First recall that our computations are performed using only the HNC form
for G given by G(γ) = −1 + eγ , and note that in the following description, we shall
use a subscript applied to a vector in Rn+1 to denote a coordinate from that vector.

So, begin by choosing a set of basis functions {φi(r)}ni=0 centered on nodes (ri) of
a uniform mesh, taking mesh points ri = iR/n for 0 ≤ i ≤ n. We seek an approximate
solution of (3.4) of the form γ =

∑n
i=0 γiφi(r), and the resulting system is projected

onto φj for all j = 0, . . . , n. For any such set of basis functions, this procedure yields
a finite-dimensional system of equations of dimension n + 1 and, writing

e−βU = (e−βu(ri))ni=0 such that (e−βU)0 = 0,

h = (hi)
n
i=0, and c = (ci)

n
i=0, the HNC closure yields

(3.5) h0 = −1, hi = −1 + e−βu(ri) exp(γi), and ci = hi − γi (i = 1, . . . , n),

and we obtain the following system of equations for h and c:

h = c + ρB(h, c),(3.6)

h = f + e−βU(−1 + exp(h − c)).(3.7)

Here 1 = (1, 1, . . . , 1) and B : Rn+1 ×Rn+1 → Rn+1 is a bilinear form that represents
a discrete convolution operator and we shall also write, here and throughout,

f = −1 + e−βU

for the so-called discrete Mayer f-function.
The convolution operator from (1.1) is the only part of the problem that is dis-

cretized in a nontrivial way to give (3.6); the algebraic constraint given by the HNC
closure (1.3) simply yields the elementwise constraint (3.7). This means that the bi-
linear form B in (3.6) is central to any analysis, and we shall assume that B is nonzero
and satisfies properties B1–B2 defined as follows:

B1. B(u1 + u2,v) = B(u1,v) + B(u2,v) and B(λu,v) = λB(u,v),
B2. B(u,v) = B(v,u),
B3. B(u,u) = 0 =⇒ u = 0, and
B4. 〈u, B(u1,u2)〉 = 〈u1, B(u,u2)〉

for all u1,u2,u,v ∈ Rn+1, and λ ∈ R.
Properties B1 and B2 are the bilinearity and symmetry properties of convolution,

whereas B3 reflects the property of convolution over Rd whereby if the autocorrelation
function is identically zero, that is, if v ∗ v = 0, then v is zero almost everywhere.
It turns out that B3 is not satisfied by the Hankel transform implemented here and
by Kelley and Montgomery–Pettitt [15] for (3.6)–(3.7) because it is based on the sine
transform, and a weaker property akin to B3 does hold, but only on a codimension-
two subspace of Rn+1. Property B4 holds whenever B(u,v) = ϕFT (Fu ⊗ Fv) for
some constant ϕ and some linear mapping F , and then B3 holds for such a B if F is
invertible, where here and below we use ⊗ to denote the elementwise product of two
vectors.

The finite-dimensional analogy of (3.4) under the HNC closure is a single equation
for γ = (γi)

n
i=0:

(3.8) γ = ρB(f + e−βUG(γ)), f + e−βUG(γ − γ),
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where G(γ) = −1 + exp(γ). We shall use Nβ(γ) to denote the operator that appears
in the right-hand side of (3.8).

For the particular case of piecewise-constant basis functions used to locate ap-
proximate solutions of (3.4), we obtain the convolution operator Bn given by

(3.9) Bn(u,v) = H∗((Hu) ⊗ (Hv))

and H is a discrete Hankel transform that is defined elementwise by

(Hu)j =

(
R

n

)3
4n

j2

n−1∑
i=1

[
ij sin

(
πij

n

)
ui

]
(for 1 ≤ j ≤ n− 1)

and where (Hu)0 = 2(Hu)1 − (Hu)2 and (Hu)n = 2(Hu)n−1 − (Hu)n−2. Similarly,
H∗ is the transform defined by

(H∗u)j =
n

2R2j2

n−1∑
i=1

[
ij sin

(
πij

n

)
ui

]
(for 1 ≤ j ≤ n− 1),

and this is also extended to the zeroth and nth coordinates by extrapolation. Of
course, by the nature of the Hankel transform one can scale H to satisfy H2 = I, but
we have not done this; it is, however, clear that there is a constant ϕ depending on
R and n such that H∗ = ϕH = ϕHT .

3.2.1. Localized vectors. The practical evaluation of the convolution of two
vectors via the form Bn can be evaluated using three FFT-sine transforms, and note
that the resulting convolution satisfies Properties B1–B2 above: B1 comes from the
linearity of H, and B2 is true by definition. However, B3 is not satisfied for the
following reason:

Bn(u,u) = 0 =⇒ H∗((Hu)2) = 0 =⇒ (Hu)2 ∈ ker(H∗) = span{e0, en},

because both H and H∗, when acting on either of the vectors e0 = (1, 0, . . . , 0) or
en = (0, . . . , 0, 1), yield the zero vector.

As a result, Bn(u,u) = 0 for all u ∈ span{e0, en}, and so we shall call any
element of span {e0, en} a localized vector. Note that H is only a pseudoinverse of H∗

in the sense that they are mutual inverses only on the space {0} × Rn−1 × {0}, the
orthogonal complement of the space of localized vectors.

3.3. Algorithm implementation. Any smooth system of equations of the form
(1.6), (3.4), or (3.8) is amenable to a Picard iteration algorithm for small values of
ρ, and so we use this approach to locate a base solution on a solution branch. In
the vicinity of a bifurcation, both Picard- and Newton-based iteration methods will
fail to converge and one must modify the system to be solved in order to account for
this instability. We have therefore adopted the well-known pseudo arc-length (PAL)
strategy due to Keller [14] and others: view a solution branch B as a one-dimensional
manifold that can be parameterized by an arc-length parameter s and augment (1.6)
with a constraint in order to obtain a well-posed system of equations.

The system we solve in practice, again with a Newton method, is F (γ, ρ, s) =
(0, 0), where

(3.10) F(γ, ρ, s) ≡ (γ − ρNβ(γ),g(γ, ρ, s)),
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and g is an additional arc-length constraint. In principle, there are many possible
choices for the function g, but the constraint used in [14] is

g(γ, ρ, s) = 〈s0,γ − γ0〉 + σ0(ρ− ρ0) − (s− s0),

where (s0, σ0) is the unit tangent vector at a given point (γ0, ρ0, s0) ∈ B, so that
F(γ0, ρ0, s0) = 0.

The difference ds := s − s0 is a fixed and typically small quantity but it is
sometimes necessary to reduce ds if B nears an apparent spinodal as there can be
many fold bifurcations over a small interval of densities. We do this by monitoring the
number of Newton iterations required to reduce the residual to a prescribed tolerance
and reduce ds by a constant factor if this number is four or greater.

The Newton step of the PAL algorithm requires a linear solver, and we use an
unpreconditioned, restarted GMRES(20) algorithm. As discussed in [15], this is ap-
propriate for integral equations posed on a finite domain as the nonlinear convolution
operator in the right-hand side of (1.6) can be formulated as a compact mapping in a
suitable function space, and this leads to robust convergence properties for GMRES
without preconditioning.

3.3.1. Computing loci of fold bifurcations. Since the problem (1.1) and
(1.5) contains the parameters ρ and β, the location of a fold bifurcation may be
considered to vary as a function of either ρ or β. We have therefore implemented an
algorithm to compute the locus of bifurcation points as they change with respect to
changes in temperature (or, rather, changes in β) by applying a Newton method to a
discretization of the following augmented or codimension-two formulation:

γ = ρ Nβ(γ),(3.11)

k = ρ dγNβ(γ)[k],(3.12)

1 =
1

n

n∑
j=0

〈k, ej〉 .(3.13)

Applying a Newton iteration to (3.11)–(3.12) allows us to locate a locus of fold
points parameterized by ρ, noting that (3.11)–(3.12) ask that γ solve (3.8), but also
that the linearization of the system not be invertible due to the existence of a nonzero
null vector, k, that appears in (3.12). The integral constraint in (3.13) is present only
to ensure that k is nonzero.

Again, we used GMRES(20) as the linear solver for the Newton iteration method
applied to (3.11)–(3.13). Moreover, because we were able to locate (γ,k, β) for each
candidate ρ in practice, a property that can be seen in Figure 1.1, we had no need to
implement the PAL algorithm on (3.11)–(3.13).

3.4. Other details.

3.4.1. A fourth-order convolution operator. In order to increase the order
of approximation of the finite-dimensional convolution operator Bn(u,v) with respect
to the mesh parameter n, we utilized a simple Richardson extrapolation scheme that
provides a fourth-order convolution form denoted B4

n(u,v) that utilizes six FFT-sine
operations and a single cubic interpolation.

Analytic derivatives were used for the discretization of (3.10), but these were
calculated numerically using Bn rather than B4

n, although the map Nβ(γ) itself was
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calculated using B4
n. To form the numerical derivative operators of (3.11)–(3.13) we

again used a difference formula based on the convolution operator Bn, rather than its
fourth-order extension B4

n. However, to evaluate (3.11)–(3.13) as a nonlinear operator
acting on (γ,k, ρ), we did use the fourth-order discrete convolution operator B4

n.
Irrespective of the parameter values, we used a high tolerance of 10−3 for GMRES,
controlling the arc-length ds in such a way that three Newton iterations (or four for
some computations) were needed for a nonlinear residual of 10−11.

4. The fundamental property of discrete vapor spinodals. Let us begin
this section with a definition.

Definition 3. A solution branch C of the discrete OZ equation (3.8) (with
any closure function G and any bilinear form B) is said to possess a discrete vapor
spinodal if (ρ,γ) = (0,0) ∈ C and sup{ρ : (ρ,γ) ∈ C} < ∞.

Let us now assume a structure on the function G in (3.8) that is chosen to mimic
the behavior of the floating-point realization of the exponential function −1 + eγ :

G1. G(γ) ≥ −1 and there exists an m > 0 such that G(γ) = −1 for all γ ≤ −m,
G2. G is continuous and monotonic increasing, and it is C1 smooth on (−m,+∞),

and
G3. G is superlinear in the sense that limγ→+∞ G(γ)/γ = +∞.

Assumption G1 effectively states that e−m is indistinguishable from zero if m is
sufficiently large and so is not actually satisfied by the choice G(γ) = −1 + eγ that
yields the HNC closure. However, by taking m to be as large as we like, one can
find functions G that satisfy G1–G3 and which are as close as we like to the HNC
choice. Given the approximate nature of the integral equation theories considered in
this paper, perhaps this is not the unreasonable assumption it first appears to be.

Throughout the remainder of the paper, we shall write g for the inverse of 1 +G
on the domain [−m,∞) so that the domain of g is [0,∞) with range [−m,∞) and
limx→∞ g(x)/x = 0 by G3.

The following proposition shows that the finite-dimensionality of (3.8) ensures
that one cannot observe a divergent-in-norm total correlation function independently
of the direct correlation function, quite unlike the continuous case.

Proposition 1. For fixed β > 0 and any discrete convolution form B that
satisfies B1 and B2, there is a connected set C ⊂ Rn+1 of solutions of (3.8) such that
(γ, ρ) = (0, 0) ∈ C and C is unbounded in the following sense: for each M > 0, a
solution pair (γ, ρ) ∈ C can be found such that ‖γ‖ + ρ = M with ρ > 0. As a result,
if C possesses a discrete vapor spinodal, then there is a sequence (γk, ρk) and a ρsp ≥ 0
such that ‖γk‖ → ∞ and ρk → ρsp as k → ∞.

The discrete total and direct correlation functions hk and ck corresponding to γk

satisfy

h = c + ρkB(h, c),(4.1)

h = f + e−βUG(h − c).(4.2)

If ‖hk‖ → ∞, then ‖ck‖ → ∞ and ‖ck‖∞ ∼ ‖hk‖∞ + o(1) as k → ∞.

Finally, suppose B also satisfies B4 and has the property that B(e0, e0) = 0.
Under these additional assumptions if ‖ck‖ → ∞, then ‖hk‖ → ∞.

Proof. The existence of C with the stated properties follows immediately from the
implicit function theorem and the Leray–Schauder continuation principle (see [25] for
example).
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Now suppose that C is a discrete vapor spinodal; then the only solution of (3.8)
with ρ = 0 is the base solution γ = 0, and it follows immediately that any solution
pair (γ, ρ) ∈ C with γ �= 0 must satisfy 0 < ρ ≤ ρmax, where ρmax := sup{ρ ≥ 0 :
(γ, ρ) ∈ C}. Hence it follows from the unboundedness of C in the sense stated that
the norm of γ must diverge along C.

From (4.2) and G1 it follows that h ≥ −1 and that the zeroth component of h is
h0 = −1 so that (4.2) can be written

(4.3) g(eβU(h + 1)) = h − c,

ignoring the undefined zeroth component of eβU(h+1) for the moment. Hence, consid-
ering the vectors h and c and supposing that the ith entry in h is nonzero, assuming
i ≥ 1, we obtain

ci = hi − g(eβu(ri)(hi + 1)) = hi

(
1 − g(eβu(ri)(hi + 1))

hi

)
,

and therefore, if hj = 〈ej ,h〉 = ‖h‖∞ > 1 and so j ≥ 1 by the lower uniform bound
h ≥ −1, then

cj = ‖h‖∞
(

1 − g(eβu(rj)(‖h‖∞ + 1))

‖h‖∞

)
,

where ‖ · ‖∞ is the usual maximum norm of a vector. Hence, we may assume by
choosing a subsequence if necessary that if C has a discrete vapor spinodal, then for
some fixed, nonzero j ∈ {1, 2, . . . , n} there results

‖c‖∞
‖h‖∞

≥ |cj |
‖h‖∞

=

∣∣∣∣1 − g(eβu(rj)(‖h‖∞ + 1))

‖h‖∞

∣∣∣∣ ,
again provided ‖h‖∞ > 1.

Thus, if (hk, ck) is a sequence of solutions of (4.1)–(4.2) and ‖hk‖ → ∞ as k → ∞
in any norm, then ‖hk‖∞ → ∞ as all finite-dimensional norms are equivalent. Since
limx→∞ g(x)/x = 0 it is clear that ‖ck‖∞/‖hk‖∞ → 1 as k → ∞ as claimed.

For the last part, suppose, without loss of any generality, that there is an M > 0
such that ‖hk‖∞ ≤ M ; then (4.3) shows that the jth component of ck, | 〈ej , ck〉 | for
j ≥ 1, is bounded above by

(4.4) | 〈ej , ck〉 | ≤ M + max
−1≤x≤M

g((x + 1)eβ maxj≥1(u(rj))) < ∞,

which is potentially very large in practice but finite nevertheless.
Thus, the only way in which ‖ck‖ can diverge is if ck := 〈e0, ck〉 diverges as

k → ∞. From (4.1) there results

〈e0,hk〉 = ck + ρk 〈e0, B(hk, ck)〉

so that

|ck| ≤ | 〈e0,hk〉 | + ρmax| 〈e0, B(hk, ck)〉 | ≤ | − 1| + ρmax| 〈hk, B(ck, e0)〉 |.

Writing ck = cke0 + c⊥k , where
〈
e0, c

⊥
k

〉
≡ 0, we obtain

|ck| ≤ 1 + ρmax|
〈
hk, B(cke0 + c⊥k , e0)

〉
| ≤ 1 + ρmax|

〈
hk, B(c⊥k , e0)

〉
|.
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As a result, we finally obtain a bound on |ck| because of the existence of the pointwise
upper bound (4.4) on c⊥k , and so the final claim holds.

We can now prove the following.
Theorem 2. Suppose that G1–G3 are satisfied by G, that B = Bn, and that the

resulting equation (3.8) has a solution branch C with a discrete vapor spinodal. Take
any sequence of solutions (hk, ck) of (4.1)–(4.2) with density values ρk corresponding
to solutions from C such that ‖hk‖ → ∞ and (hk) does not localize at the cut-off in
the sense that

lim inf
k→∞

| 〈ej ,hk〉 |
‖hk‖

> 0 for some j ∈ {1, . . . , n− 1}.

Assuming also that 〈e0, ck〉 is a bounded sequence, if ρk → ρsp as k → ∞, then
ρsp = 0.

Proof. Let us begin by reformulating (4.1)–(4.2) by writing c = c0e0 + c⊥ and
h = h0e0 + h⊥, where c⊥,h⊥ ∈ span{e0}⊥. Then (4.1) becomes

c0e0 + c⊥ = h0e0 + h⊥ + ρB(c0e0 + c⊥, h0e0 + h⊥),

and projecting this onto span{e0} gives

c0 = h0 − ρ
〈
e0, B(c0e0 + c⊥, h0e0 + h⊥)

〉
= h0 − ρ

〈
B(e0, c0e0 + c⊥), h0e0 + h⊥〉 (using B1 and B4)

= h0 − ρ
〈
B(e0, c

⊥), h0e0 + h⊥〉
= h0 − ρ

〈
c⊥, B(e0, h0e0 + h⊥)

〉
(since Bn(e0, e0) = 0)

= h0 − ρ
〈
c⊥, B(e0,h

⊥)
〉

= h0 − ρ
〈
e0, B(c⊥,h⊥)

〉
.

However, from (4.2), h0 = −1 as (e−βU)0 is interpreted as zero, whence

c0 = −1 − ρ
〈
e0, B(c⊥,h⊥)

〉
,

which defines a bilinear functional of c⊥ and h⊥ that depends affinely on ρ.
Now (4.1) can be projected onto span{e0}⊥ with projector Π to yield

h⊥ = c⊥ + ρΠB(c0(ρ, c
⊥,h⊥)e0 + c⊥,−e0 + h⊥),(4.5)

h⊥ = −1⊥ + e−βU⊥
G(h⊥ − c⊥),(4.6)

where the advantage of this formulation is that e−βU⊥
is strictly positive for any

intermolecular potential, thus removing the problematic singularity at r = 0. Here,
we are using a superscript ⊥, as in v⊥, to denote the projection Π(v). As a result,
the singularity in (4.6) has been removed and (4.6) is now equivalent to

(4.7) c⊥ = h⊥ − g(eβU⊥
(h⊥ + 1⊥)).

Returning to the sequence of solutions from C, define new sequences

Pk := h⊥
k /‖hk‖ and Qk := c⊥k /‖hk‖,
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as defined in the statement of the theorem; then

Pk −Qk

‖hk‖
= ρkΠB

(
〈e0, ck〉 e0

‖hk‖
+ Qk,−

e0

‖hk‖
+ Pk

)
,

and

(4.8) Qk = Pk − g(eβU⊥
(h⊥

k + 1⊥))

‖hk‖
.

Using standard compactness properties, one can find P ′ of unit norm such that Pk →
P ′, and therefore Qk → P ′ by (4.8) using the sublinearity of g. As a result, we find
that

ρkΠB

(
〈e0, ck〉
‖hk‖

+ P ′, P ′
)

→ 0

as k → ∞.
By hypothesis we can find a ρsp ≥ 0 such that by extracting a further subse-

quence if necessary ρspΠB (P ′, P ′) = 0. If ρsp > 0 then ΠB (P ′, P ′) = 0 follows
and so B (P ′, P ′) = αe0. Recalling that B = Bn in the statement of the theorem,
H∗(HP ′)2 = αe0 whence α = 0 by the fact that He0 = 0. Hence (HP ′)2 = αe0

for some α ∈ R, so that HP ′ =
√
αe0 giving α = 0 as H is self-adjoint, so that

finally P ′ ∈ span{e0, en}. By construction of the sequence (Pk), it follows that
P ′ ∈ span{en} which states that hk localizes at the cut-off, contradicting an assump-
tion of the theorem.

From Theorem 2 we have the following trichotomy in terms of discrete vapor
spinodals when using the convolution form B = Bn in (4.1)–(4.2). If C is that discrete
vapor spinodal, at least one of the following applies along a sequence (hk, ck, ρk) ∈ C:

T1. Density ρk heads to zero,
T2. 〈e0, ck〉 is unbounded, or
T3. hk/‖hk‖ (up to a subsequence) tends toward the localized vector en.

Note that each of T1, T2, and T3 represents a different, nonphysical possibility,
and both T1 and T3 have been observed in practice when G takes the HNC form,
even though G1 does not apply in that context. On the other hand, we have not
observed T2 in practice. It is an immediate corollary of T1 that (4.1)–(4.2) has a fold
bifurcation in the sense of Definition 2 at some value of the density parameter, and so
one should expect to observe a folded geometry of isothermal vapor solution branches
at subcritical temperatures.

4.1. Qualitatively correct convolution forms. The T1–T3 trichotomy again
raises the central question of the choice of convolution form B in (3.8). There are
advantages in defining B by

(4.9) B(u,v) = FT (Fu ⊗ Fv) such that FFT = I

for some linear transformation F for the following reason. Such a choice for B allows
one to introduce a qualitatively correct discrete compressibility functional, χ−1

d , say,
for (4.1)–(4.2) (with any nonlinearity G) by setting

χ−1
d = 1 − ρ 〈e0, Fc〉 .

By the term qualitatively correct, we mean that unlike (4.1)–(4.2) which is realized
on setting B = Bn, using instead the convolution form B which is based on such
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Fig. 5.1. (Left) A comparison of two computed bifurcation loci for two values of R, namely,
10σ and 100σ. (Right) For the R = 100σ case, inverse compressibility is evaluated along the liquid
and vapor branches; note that this is never zero.

a transformation F in (4.9) ensures that there is no solution of (4.1)–(4.2) that has
zero inverse compressibility. This means that there is a version of Lemma 2.1 that
holds when the convolution form B is based on (4.9), but Lemma 2.1 fails to hold
when Bn is the chosen convolution form. We shall report the results of an analysis
that results from the implemenation of a qualitatively correct convolution form in a
separate publication.

5. Computations.

5.1. The LJ 6-12 potential. Throughout this section we use the Lennard–
Jones potential and set σ = 1, ε = 1, with the cut-off R chosen to be 100σ unless
stated otherwise, and we have used a numerical mesh of 213 + 1 points.

1. Figure 5.1 (left) is a comparison of two codimension-two bifurcation loci in
the (ρ, T )-plane that shows a significant discrepancy between the use of two choices
of cut-off parameter R. The right-hand figure shows the values of inverse compress-
ibility obtained along the loci from the left-hand curve for the R = 100σ case. For
true spinodals, which we gleaned from our previous analysis should not occur in the
computations, this curve should be identically zero; clearly it is not.

One may notice that the curve in Figure 5.1 (left) lies slightly above that reported
by others, such as [17, p. 833] and Figure 3 of [3]. The reasons for this are that the
cut-off parameter R in the stated references is different from ours, and we have gen-
erally used a different number of points for our discretization than the cited articles.
Our data may be slightly different also because we have computed the location of
bifurcation points, rather than relying on the extrapolation of a numerical algorithm
in order to estimate their location.

2. Figure 5.2 shows a computed unfolding of the transcritical bifurcation from the
apex of Figure 5.1 (left), where nine different temperature values have been used to
compute three subcritical isothermal solution branch pairs and six supercritical vapor
isotherms. The appearance of several fold bifurcations can be seen on both liquid
(high-density) and vapor (low-density) branches, and note the apparent existence of
a locus of solutions of (3.6)–(3.7) with zero inverse compressibility.

3. Shown in Figure 5.3 (left) are the results of a computation undertaken with
a high temperature at β = 1 and with R = 120σ; note the large number of fold
bifurcations that seem to accumulate in the vicinity where inverse compressibility is
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**

Fig. 5.2. (Left) Inverse compressibility against density. (Right) Zoom of left-hand plot showing
positive values of inverse compressibility at the fold points. Solutions with zero inverse compress-
ibility are clearly seen but not at the fold bifurcations.

*

Fig. 5.3. (Left) A solution branch with several bifurcations showing inverse compressibility
against density with R = 120 and (1/T ∗ =)β = 1. (Right) Three solution branches and bifurcations
with inverse compressibility plotted against density at R = 120 and β = 0.73. An apparent region (the
shaded region) that contains no solutions is filled by a solution branch with negative compressibility.

zero. In the right-hand figure we have located a branch of solutions at β = 0.73 that
spans a shaded region where no solution is believed to exist, although this particular
branch contains only solutions that have negative compressibility. Other branches of
solutions have been found before within this region [21], but they were complex-valued
and their presence was a simple consequence of the existence of fold bifurcations. We
have not been able to locate any real solutions in this region with positive compress-
ibility; that is not to say that none are there, but, unlike vapor isotherms, we have no
systematic method for locating solutions in this region.

5.2. Comparison with the double Yukawa potential. For all of the follow-
ing computations we used a numerical mesh with 212 + 1 points with the following
double Yukawa (DY) intermolecular potential for various values of the cut-off R:

u
DY

(r) =
ε

r

(
A1e

−z1(r−σ) −A2e
−z2(r−σ)

)
,

where σ is particle diameter, and A1 = 1.6438σ, z1 = 14.7σ−1, A2 = 2.03σ, and
z2 = 2.69σ−1 are the parameter values used in [8, 20]. This intermolecular potential
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R

R

R

R

Fig. 5.4. (Left) Locus of fold bifurcations for the DY potential with varied cut-offs and 4096
mesh points. (Right) Values of inverse compressibility along the locus for R = 10σ, . . . , 80σ.

Fig. 5.5. (Left) A plot of the low-density correlation function r2h(r) along the bifurcation
locus from Figure 5.4 (left) at (ρ∗, T ∗) = (0.085, 1.2) for cut-off values R = 10σ, 20σ, 40σ, and
R = 80σ. (Right) The high-density correlation function r2h(r) along the same bifurcation locus at
(ρ∗, T ∗) = (0.597, 1.06) with R = 80σ.

is commonly used as it has more rapid decay than LJ, with a repulsive soft core and
attractive tail, which, it is believed, should lead to greater stability in computations.
However, the property associated with the HNC closure of having L1-divergence of
the total correlation with L2-boundedness at a spinodal is totally unaffected by the
choice of potential and the decay rate of its tail.

1. Figure 5.4 is a repetition of Figure 5.1 for the DY potential for varying cut-offs:
R = 10σ, 20σ, 40σ, and 80σ. The critical points at the apex of the locus in Figure 5.4
(left) are all close to ρc = 0.27 at Tc = 1.52. The curves corresponding to different
cut-off points are in good agreement up to the apex but differ slightly beyond it;
however, the values of inverse compressibility do vary somewhat with respect to the
cut-off as shown in Figure 5.4 (right).

2. Figure 5.5 (left) illustrates a computed thermodynamic state with large com-
pressibility that is located in the relatively low-density vapor Figure 5.4 (left), specifi-
cally at (ρ∗, T ∗) = (0.085, 1.2). Solutions have been computed with R = 10σ, 20σ, 40σ,
and 80σ, and note that solutions at cut-offs higher than R = 10σ are visually indistin-
guishable. A thermodynamic state from the high-density liquid region of Figure 5.4
(left) is shown in Figure 5.5 (right) for comparison.
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