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BIFURCATIONS OF PERIODIC SOLUTIONS SATISFYING THE
ZERO-HAMILTONIAN CONSTRAINT IN REVERSIBLE

DIFFERENTIAL EQUATIONS∗

R. E. BEARDMORE† , M. A. PELETIER‡ , C. J. BUDD§ , AND M. AHMER WADEE¶

Abstract. This is a study of the existence of bifurcation branches for the problem of finding
even, periodic solutions in fourth-order, reversible Hamiltonian systems such that the Hamiltonian
evaluates to zero along each solution on the branch. The class considered here is a generalisation
of both the Swift-Hohenberg and extended Fisher-Kolmogorov equations that have been studied in
several recent papers. We obtain the existence of local bifurcations from a trivial solution under mild
restrictions on the nonlinearity and obtain existence and disjointness results regarding the global
nature of the resulting bifurcating continua for the case where the Hamiltonian has a single-well
potential.

The local results rest on two abstract bifurcation theorems which also have applications to sixth-
order problems and which show that the curves of zero-Hamiltonian solutions are contained within
two-dimensional manifolds of solutions of both negative and positive Hamiltonian.
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1. Introduction. In [25, 7, 28, 29, 36, 20, 9] the authors find periodic solutions
of systems of Hamiltonian differential equations with the property of having prescribed
zero Hamiltonian. In particular, existence theorems for even periodic orbits satisfying
the zero-Hamiltonian constraint in certain fourth-order Hamiltonian systems have
been derived by Peletier et al. and van den Berg using shooting techniques [35, 36].
While such shooting methods rely heavily on the particular form of the nonlinearities
in a given problem and thus suffer from a lack of generality, the techniques do provide
a great deal of quantitative information about the solutions. The problem of finding
periodic solutions of Hamiltonian systems with prescribed nonzero energy has been
studied extensively (see [31, 30] and more recently [4]).

The main contribution of this paper is to view the problem of finding zero-
Hamiltonian periodic solutions of (1.1) as a one-parameter bifurcation problem from
a zero solution, with either period or an external parameter playing the role of bifur-
cation parameter. To solve this bifurcation problem we formulate two abstract Hopf
bifurcation theorems (Theorems 2.2 and 2.4) and deduce the existence of the desired
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solutions as a corollary. The abstract results apply to reversible fourth-order Hamil-
tonian systems at 1:1 and m:n resonances, provided that the Hamiltonian is indefinite
about the trivial solution. We call these simple and double bifurcations, respectively,
as the theorems lead to either a single continuum or a pair of bifurcating continua of
solutions. Furthermore, the proofs of the bifurcation theorems are easily modified to
show that the zero-Hamiltonian solutions that we find actually lie within manifolds
of solutions of positive and negative Hamiltonian.

The proofs of our abstract results are achieved using a Lyapunov–Schmidt re-
duction technique, as can be found in many texts [38, 2, 11], and the fact that we
essentially have only one bifurcation parameter means that some of the global bi-
furcation results of [6] are applicable. Using arguments from the configuration-space
formulation of fourth-order problems [34, 17, 29], we shall be able to find bifurca-
tion invariants which demonstrate that the bifurcating continua form a countable
collection of mutually disjoint sets. Subsequently, we shall be able to show that a
simple bifurcation for fourth-order problems results in the existence of an unbounded
(in a suitable sense) continuum of solutions, rather like the classical global Hopf bi-
furcation theorem described in [1]. The global aspect of the paper is peculiar to
fourth-order equations and does not immediately apply to more general Hamiltonian
systems (like the sixth-order problem [33, equation (2)] for which we also have local
results). Consequently, we have what approaches a nonlinear Sturm–Liouville theory
(which is well known in the context of elliptic two-point boundary-value problems [5])
for zero-Hamiltonian solutions of (1.1) given below.

A Lyapunov–Schmidt reduction procedure is specifically available for systems that
are either reversible or Hamiltonian [37, 22]; however, we do not make use of those
results in this paper. The reason for this is that it is not clear that studying the
problem in a space of reduced dimension helps to elucidate the role played by the
Hamiltonian constraint, and consequently we approach the problem ab initio.

So, consider the class of fourth-order differential equations

u′′′′ + pu′′ + Fu(u) = 0,(1.1)

where primes refer to differentiation with respect to x, p is a real parameter, and the
function F ∈ Cω(R) satisfies

(F) F (0) = Fu(0) = 0 and Fuu(0) = 1.
Here, Cω(R) denotes the space of real-analytic functions on R, and a subscript u

denotes differentiation with respect to u. We shall assume throughout that F satisfies
assumption (F) and is therefore positive in some neighborhood of u = 0. Note that
the final condition in (F) is not restrictive as it can always be obtained from a suitable
scaling of u and of time (denoted x), provided that Fuu(0) > 0.

Now (1.1) is reversible (see [8] for a discussion of reversible systems) and Hamil-
tonian, with Hamiltonian

H ≡ u′u′′′ − 1

2
u′′2 +

1

2
pu′2 + F (u),(1.2)

and when suitably scaled (see [36]), (1.1) provides the extended Fisher–Kolmogorov
and Swift–Hohenberg equations, with Fu(u) = ±u(1 − u2).

Fourth-order equations like (1.1) have a burgeoning literature, as can be seen from
the recent studies in [3, 7, 24, 26, 27, 28, 29, 35, 36, 8, 12, 19, 18]; see in particular
the recent monograph [25] and also [36, 20]. In these references it is shown, using a
variety of variational, geometric, functional analytic, and elementary techniques, that
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(1.1) may possess periodic, homoclinic, and heteroclinic solutions, with applications
ranging from geology to buckling theory; in particular, zero-Hamiltonian periodic
solutions play an important role in the study of cellular buckling (see [12, 19, 8] and
the references therein; see also [9]).

We note at this stage that in order for a bifurcation from the trivial solution to
occur as p varies, no further restrictions will be required on the nonlinearity F than
those already given in assumption (F).

As an application of the results of the first part of the paper, we analyze the
behavior of the simple bifurcating branch which connects to (u, p) = (0, 2) for the
case

F (u; ε) =
1

2
u2 − ε

(
1

4
u4 − 1

6
u6

)
,(1.3)

where ε is a parameter that unfolds the degenerate problem from ε = 0. In particular,
we prove the existence of a fold bifurcation on this bifurcating branch, which was
conjectured to exist in [19] and [12]. Finally, the results of some numerical calculations
performed in AUTO will be presented, which indicate that similar behavior is observed
for the multiple bifurcating branches which connect to the trivial solution at p > 2.
We also compute the symmetry-breaking bifurcations on these branches and illustrate
the subsequent connecting branches of solutions.

2. Bifurcation theorems. Let X,Y , and Z be Banach spaces, and BL(X,Y )
denote the space of continuous (bounded) linear maps from X to Y . We write X∗

for the dual space of continuous linear functionals BL(X,R). If L ∈ BL(X,Y ) and
U ⊂ X is a closed subspace of X, then L|U ∈ BL(U, Y ) will denote the restriction
of L to U . We shall use ‖ · ‖X to denote the norm on X, and Iso(X,Y ) denotes the
set of continuous linear isomorphisms from X to Y . Let Cr

2π be the Banach space of
2π-periodic Cr functions from [0, 2π] to R

n, endowed with a Cr norm.
If f : X → Z is a given smooth mapping, then df(x)[h] will denote the Fréchet

derivative of f . For higher derivatives, the k-form dkf(x)[h, . . . , h] will also be written
as dkf(x)[h](k) for brevity. Partial derivatives of a function f ∈ C1(X × Y,Z) will
be written as dxf(x, y)[h] ∈ Z and dyf(x, y)[k] ∈ Z, where (h, k) ∈ X × Y , and
higher derivatives will be written as in d2

xyf(x, y)[h, k]. If X = R, we will identify
dxf(x, y)[h] with hdxf(x, y)[1], and we shall also write

dkf(x)[h1, . . . , hk] = (Πk
j=1hj)d

kf(x)[1, . . . , 1],

although we shall often omit the k-vector [1, . . . , 1] in this expression where no con-
fusion results. Given u, u1, u2 ∈ X, we will write 〈u〉 ≡ R · u and 〈u1, u2〉 =
{α1u1 + α2u2 : α1, α2 ∈ R}. For any continuous function v, we denote the delta func-
tional by δ(v) ≡ v(0).

For completeness, let us recall the following. A linear mapping L ∈ BL(X,Y ) is
said to be Fredholm if its range ran(L) is a closed subspace of Y with finite codimension
and its null space ker(L) is a finite-dimensional subspace of X. Then

ind(L) = dim ker(L) − codim ran(L)

is said to be the Fredholm index of L. We recall the following theorem, which gives a
useful collections of facts can be found in [32].

Theorem 2.1. If L ∈ BL(X,Y ) is Fredholm and K ∈ BL(X,Y ) is a compact
linear operator, then L+K ∈ BL(X,Y ) is also Fredholm and ind(L+K) = ind(L).
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As a consequence, if L is Fredholm of index zero and is injective, then it is an isomor-
phism. The set F of Fredholm operators is open in BL(X,Y ), and ind is constant on
connected components of F .

2.1. Statement of the abstract problem. Let ψ ∈ Z∗,M ∈ Cω(X × R
2, Y ),

and g ∈ Cω(X × R
2, Z); now consider the bifurcation problem

H(u, p, µ) ≡
(

M(u, p, µ)
ψ(g(u, p, µ))

)
=

(
0
0

)
,(2.1)

where u ∈ X and µ, p ∈ R are parameters. Throughout, we shall write H = M ×ψ(g)
for brevity. We intend that (2.1) represent an abstract formulation of finding periodic
solutions of (1.1) with the property of having zero Hamiltonian; accordingly we shall
call the functional ψ ◦ g the energy of (2.1). Since the functional H in (1.2) is of
quadratic order at the origin, we impose this degree of degeneracy into the operator
g. Hence we assume that

M(0, p, µ) ≡ 0(2.2)

and

g(0, p, µ) ≡ 0, dug(0, p, µ) ≡ 0.(2.3)

By the term bifurcation from the trivial solution u = 0 of (2.1) at (u, p, µ) =
(0, p0, µ0) we mean that there is a sequence (un, pn, µn) ⊂ X\{0}×R

2 which satisfies

H(un, pn, µn) ≡ 0, un → 0 and (pn, µn) → (p0, µ0) as n→ ∞.

2.2. Local bifurcations. Let us now seek conditions under which there is a
bifurcation of (2.1) from the trivial solution. The implicit function theorem applied
to (2.1) shows that (0, p0, µ0) can be a bifurcation point for (2.1) only if

duM(0, p0, µ0) 
∈ Iso(X,Y ).(2.4)

Furthermore, if M is a assumed to be a Fredholm mapping, then a bifurcation can
occur only when duM(0, p0, µ0) is not injective. Motivated by this, we shall now
consider two such cases:

(i) dim ker(duM(0, p0, µ0)) = 1,
(ii) dim ker(duM(0, p0, µ0)) = 2.
Case (i) is reminiscent of the theorem on bifurcation from a simple eigenvalue

and will give rise to a unique bifurcating continuum. In case (ii), however, we will be
able to locate exactly two distinct bifurcating continua. Let us now proceed with the
promised results.

Theorem 2.2 (simple abstract Hopf bifurcation). Suppose that (2.2)–(2.3) hold
and that duM(0, p0, µ0) ∈ BL(X,Y ) is Fredholm of index zero, where ker(duM(0, p0, µ0))
= 〈k〉. Suppose also that X = 〈k〉 ⊕ U , V = ran(duM(0, µ0, p0), Y = 〈K〉 ⊕ V, P :
Y → V is the projection operator along 〈K〉, and Q is the projection onto 〈K〉 which
is identified with R.

Suppose further that ψ(d2
uug(0, p0, µ0)[k, k]) = 0 and that the operator D ∈ BL(U×

R
2, V × R

2) given by

D =

⎛
⎝ PduM(0, p0, µ0) Pd2

upM(0, p0, µ0)[k, 1] Pd2
uµM(0, p0, µ0)[k, 1]

0 Qd2
upM(0, p0, µ0)[k, 1] Qd2

uµM(0, p0, µ0)[k, 1]
ψ(d2

uug[k, ·]) ψ(d3
uupg[k, k, 1]) ψ(d3

uuµg[k, k, 1])

⎞
⎠
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is an isomorphism.
Then, (0, p0, µ0) is a bifurcation point for (2.1). Moreover, there is an interval I

containing 0 and a unique analytic branch B of solutions of (2.1) on which (u, p, µ) =
(u(β), p(β), µ(β)) for β ∈ I and which satisfies u(β) 
= 0 for β 
= 0, (u(0), p(0), µ(0)) =
(0, p0, µ0). Moreover, there results ‖u(β) − βk‖X = O(β2) as β → 0.

Proof. Let us express u in terms of the decomposition of X as u = βk + r =
β(k + ρ) ∈ 〈k〉 ⊕ U ; then (2.1) is equivalent to

(P +Q)M(β(k + ρ), p, µ) = 0,(2.5)

ψ(g(β(k + ρ), p, µ)) = 0.(2.6)

Using analyticity, it follows that there are analytic mappings M̃ and g̃ such that

M(β(k + ρ), p, µ) = βduM(0, p, µ)[k + ρ] + β2M̃(β, ρ, p, µ)

and

ψ(g(β(k + ρ), p, µ)) = ψ

(
β2

2
d2
uug(0, p, µ)[k + ρ, k + ρ] +

β3

2
g̃(β, ρ, p, µ)

)
.

As we are seeking nonzero solutions to (2.1), we can divide by appropriate powers
of β in (2.5)–(2.6) and solve the equivalent problems

(P +Q)duM(0, p, µ)[k + ρ] + βM̃(β, ρ, p, µ) = 0,(2.7)

ψ
(
d2
uug(0, p, µ)[k + ρ, k + ρ] + βg̃(β, ρ, p, µ)

)
= 0.(2.8)

In turn, (2.7)–(2.8) is equivalent to

P
(
duM(0, p, µ)[k + ρ] + βM̃(β, ρ, p, µ)

)
= 0 ∈ V,(2.9)

Q
(
duM(0, p, µ)[k + ρ] + βM̃(β, ρ, p, µ)

)
= 0 ∈ R,(2.10)

ψ
(
d2
uug(0, p, µ)[k + ρ, k + ρ] + βg̃(β, ρ, p, µ)

)
= 0 ∈ R,(2.11)

where the one-dimensional space 〈K〉 is identified with R.
Let us now denote (2.9)–(2.11) as Φ1(β, ρ, p, µ) = 0, where Φ1 is an analytic

mapping of Banach spaces

Φ1 : R × U × R
2 → V × R

2.(2.12)

Under the stated assumptions it is clear that Φ1(0, 0, p0, µ0) = 0, and one can show
that D = dρ,p,µΦ1(0, 0, p0, µ0), noting Q[duM(0, p0, µ0)] = 0 by definition. It now
follows by the implicit function theorem that we may locally solve (2.9)–(2.10) for ρ,
p, and µ as a function of β. The fact that ρ(0) = 0 completes the proof.

The following result tells us that Theorem 2.2 is a special case of a more general
result which says that the branch B of zero energy solutions from this theorem is
formed from the intersection of a manifold of solutions of M(u, p, µ) = 0 with the
zero-energy surface {(u, p, µ) : ψ(g(u, p, µ)) = 0}.

Theorem 2.3. The curve of zero-energy solutions B from Theorem 2.2 is con-
tained within a (locally) two-dimensional analytic manifold M of solutions of

M(u, p, µ) = 0(2.13)

of both positive and negative energy.
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Proof (sketch). Repeat the same argument as in Theorem 2.2 but for the system

Hε(u, p, µ) ≡
(

M(u, p, µ)
ψ(g(u, p, µ)) − ε

)
=

(
0
0

)
.(2.14)

One obtains a mapping Φ1(β, ρ, p, µ, ε), entirely analogous to (2.12), such that

Φ1(0, 0, p0, µ0, 0) = 0 and D = dρ,p,µΦ1(0, 0, p0, µ0, 0).

One can then solve ρ, p, and µ locally as analytic functions of (β, ε).
The following technical lemma shows that one can parameterize the bifurcating

branch from Theorem 2.2 using one of p or µ as parameters, and this result will be
used at a later stage in the paper.

Lemma 2.1. If (u, p, µ) = (u(β), p(β), µ(β)) is an element of the bifurcating
branch B obtained in Theorem 2.2, then at least one of

du,p(M × ψ(g)) or du,µ(M × ψ(g)) ∈ BL(X × R, Y × R)

(evaluated at (u, p, µ)) is an isomorphism for sufficiently small nonzero |β|.
Proof. Note from Theorem 2.2 that∣∣Qd2

upM(0, p0, µ0)[k, 1]
∣∣ +

∣∣Qd2
uµM(0, p0, µ0)[k, 1]

∣∣ 
= 0,

and let us therefore assume for definiteness that

Qd2
upM(0, p0, µ0)[k, 1] 
= 0.(2.15)

Now define the one-parameter family of linear mappings

L(β) ≡
(

duM(u(β), p(β), µ(β)) dpM(u(β), p(β), µ(β))
ψ(dug(u(β), p(β), µ(β)) ψ(dpg(u(β), p(β), µ(β))

)

and note that this is an (at most) rank-two perturbation of a Fredholm mapping with
index zero. It follows that we need to prove only that L(β) is injective for β 
= 0.

Using analyticity, a straightforward but lengthy calculation shows that we may

write L(β) = L0(β) + βL1(β) + β2

2 L2(β) +O(β3), where

L0(β) =

(
duM 0

0 0

)
,

L1(β) =

(
d2
uuM [k +O(β), ·] d2

upM [k +O(β), ·]
ψ(d2

uug[k +O(β), ·]) 0

)
,

and

L2(β) =

(
d3
uuuM [k +O(β), k +O(β), ·] d3

uupM [k +O(β), k +O(β), ·]
ψ(d3

uuug[k +O(β), k +O(β), ·]) ψ(d3
uupg[k +O(β), k +O(β), ·])

)
,

where each of the given derivatives is evaluated at (u, p, µ) = (0, p(β), µ(β)). For
β 
= 0, one can see that L(β) is injective if and only if T (β) is, where

T (β) =

(
duM 0

ψ(d2
uug[k +O(β), ·]) 0

)

+
β

2

(
2d2

uuM [k +O(β), ·] 2d2
upM [k +O(β), ·]

ψ(d3
uuug[k +O(β), k +O(β), ·]) ψ(d3

uupg[k +O(β), k +O(β), ·])
)

+O(β2).
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Again, each of the derivatives is evaluated at (u, p, µ) = (0, p(β), µ(β)).
Clearly T (0) is not injective, but the fact that d2

uug(0, p0, µ0)[k, k] 
= 0 implies

ker(T (0)) = 〈κ〉 ⊂ X × R,

where κ = (0X , 1) ∈ X × R. To prove that T (β) is injective for small β it suffices to
prove that

T ′(0)κ 
∈ ran(T (0)).(2.16)

However

T ′(0) =
1

2

(
2d2

uuM [k, ·] 2d2
upM [k, ·]

ψ(d3
uuug[k, k, ·]) ψ(d3

uupg[k, k, ·])
)
,

evaluating derivatives at (u, p, µ) = (0, p0, µ0), and ran(T (0)) = ran(duM(0, p0, µ0))×
ran(ψ(d2

uug(0, p0, µ0))). It follows that T ′(0)κ ∈ ran(T (0)) can be satisfied only if

d2
upM(0, p0, µ0)[k, 1] ∈ ran(duM(0, p0, µ0)),

but this contradicts (2.15). Finally, one can use an analogous argument to cover the
case whereby Qd2

uµM(0, p0, µ0)[k, 1] 
= 0.
Next we consider case (ii) where duM(0, p0, µ0) has a two-dimensional null-space.
Theorem 2.4 (double abstract Hopf bifurcation). Suppose that (2.2)–(2.3) hold

and ker(duM(0, p0, µ0)) = W , where dim(W ) = 2 with W = 〈k1, k2〉. Suppose further
that X = W ⊕ U and

Y = Z ⊕ V, V = ran(duH(0, p0, µ0)),

where V is closed, dim(Z) = 2, and Z = 〈u1, u2〉.
Now, let P : Y → V be the projection along Z and Q = I − P . For i = 1, 2,

let Qi be the projection of Y onto 〈ui〉 (which we identify with R) such that Q[y] =
Q1[y]u1 +Q2[y]u2. Set

A = ψ(d2
uug(0, p0, µ0)[k2, k2]), B = ψ(d2

uug(0, p0, µ0)[k1, k2])

and

C = ψ(d2
uug(0, p0, µ0)[k1, k1]).

Suppose that C 
= 0, B2 > AC, and let α± be the two (real nonzero distinct) roots of
the quadratic equation Aα2 + 2Bα+ C = 0. Suppose also that

det

(
Q1d

2
upM [k1 + α±k2, 1] Q1d

2
uµM [k1 + α±k2, 1]

Q2d
2
upM [k1 + α±k2, 1] Q2d

2
uµM [k1 + α±k2, 1]

)

= 0

when (u, p, µ) = (0, p0, µ0).
Then (0, p0, µ0) is a bifurcation point for (2.1). Moreover, there is an inter-

val I containing 0 and exactly two analytic branches B± of solutions of (2.1) on
which (u, p, µ) = (u±(β), p±(β), µ±(β)) for β ∈ I, with u±(0) 
= 0 for β 
= 0 and
(u±(0), p±(0), µ±(0)) = (0, p0, µ0). Moreover, there are analytic functions α± : I → R

and ρ : I → V such that α±(0) = α±, ‖ρ(β)‖Y = O(β) as β → 0, and u±(β) =
βk1 + βα±(β)k2 + βρ(β).
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Proof. Using the analyticity of M , let us write

M(u, p, µ) = duM(0, p, µ)[u] + O(2)

and

g(u, p, µ) = g(0, p, µ) + dug(0, p, µ)u+
1

2
d2
uug(0, p, µ)[u, u] + O(3),

where O(n) represents any function, Θ(u, p, µ) say, where there is a γ > 0 such that
‖Θ(u, p, µ)‖ ≤ γ‖u‖n for all (u, p, µ) in a neighborhood of (0, p0, µ0).

Now let u = β(k1+αk2+αρ) ∈W⊕U , and note that there is an analytic function
φ1 such that the equation M(u, p, µ) = 0 is locally equivalent to

βduM(0, p, µ)[k1 + αk2 + αρ] + β2φ1(α, β, ρ, p, µ) = 0.(2.17)

We may also use the analyticity of g to write

(2.18)

g(β(k1 + αk2 + αρ), p, µ) =
β2

2
d2
uug(0, p, µ)[k1 + αk2 + αρ](2) +

β3

2
φ2(α, β, ρ, p, µ),

where φ2 is another suitably defined analytic function. Now the equation M(u, p, µ) =
0 is equivalent to

(P + u1Q1 + u2Q2)M(u, p, µ) = 0,

and, after dividing (2.17) and (2.18) by β and β2, respectively, we obtain the locally
equivalent problem

P [duM(0, p, µ)[k1 + αk2 + αρ] + βφ1(α, β, ρ, p, µ)] = 0 ∈ V,(2.19)

Q1 [duM(0, p, µ)[k1 + αk2 + αρ] + βφ1(α, β, ρ, p, µ)] = 0 ∈ R,(2.20)

Q2 [duM(0, p, µ)[k1 + αk2 + αρ] + βφ1(α, β, ρ, p, µ)] = 0 ∈ R,(2.21)

ψ
(
d2
uug(0, p, µ)[k1 + αk2 + αρ](2) + βφ2(α, β, ρ, p, µ)

)
= 0 ∈ R.(2.22)

Setting β = 0, ρ = 0, p = p0, and µ = µ0 in (2.19)–(2.22), we find an equation for α:

ψ(d2
uug(0, p, µ)[k1 + αk2, k1 + αk2]) = 0.(2.23)

From the definitions of A, B, and C given in the statement of the theorem, (2.23) is
simply the equation C + 2Bα+Aα2 = 0 with solutions α = α±.

We now write (2.19)–(2.22) as Φ2(ρ, p, µ, α, β) = 0, say, where Φ2 is an analytic
mapping Φ2 : U × R

4 → V × R
3. The derivative dρ,p,µ,αΦ2(0, p0, µ0, α±, 0) is given

by the operator matrix

L ≡
⎛
⎝ A0 B0 0

0 D0 0
E0 F0 G0

⎞
⎠ ∈ BL(U × R

3, V × R
3),

where

A0 = α±PduM0, B0 =
[
Pd2

upM
0[k1 + α±k2, 1]

∣∣Pd2
uµM

0[k1 + α±k2, 1]
]
,
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E0 = 2α±ψ(d2
uug

0[·, k1 + α±k2]), G0 = 2ψ(d2
uug

0[k2, k1 + α±k2]),

F0 =
[
ψ(d3

uupg
0[1, k1 + α±k2, k1 + α±k2])

∣∣ψ(d3
uuµg

0[1, k1 + α±k2, k1 + α±k2])
]

and

D0 =

(
Q1d

2
upM

0[k1 + α±k2, 1] Q1d
2
uµM

0[k1 + α±k2, 1]
Q2d

2
upM

0[k1 + α±k2, 1] Q2d
2
uµM

0[k1 + α±k2, 1]

)
,

and a superscript zero (0) denotes evaluation of a function at (u, p, µ) = (0, p0, µ0).
Clearly, for L to be an isomorphism we require G0 
= 0, that is, ψ(d2

uug
0[k2, k1 +

α±k2]) 
= 0, but this is just B + α±A 
= 0, which is true by assumption. Since
A0 ∈ Iso(U, V ), L is an isomorphism if det(D0) 
= 0, and this is also an assumption.
Using the implicit function theorem, we can now determine all of the variables as
analytic functions of β locally to the two points (ρ, p, µ, α, β) =
(0, p0, µ0, α±, 0).

As was the case for Theorems 2.2 and 2.3, we can prove that the branches of zero-
energy solutions B± from Theorem 2.4 are obtained from the intersection of solutions
of M(u, p, µ) = 0 with the zero-energy surface.

Theorem 2.5. The two curves of zero-energy solutions B± from Theorem 2.4 are
each contained within (locally) two-dimensional analytic manifolds M± of solutions
of M(u, p, µ) = 0 of both positive and negative energy. Moreover, M+ ∩ M− =
{(0, p0, µ0)}.

Proof. This is almost a verbatim repetition of the proof of Theorem 2.4, but
modified to deal with an energy constraint of the form ψ(g(u, p, µ)) = ε.

3. The existence of bifurcations for fourth- and sixth-order systems.

3.1. Preliminaries. In this section we shall apply Theorems 2.1 and 2.2 to find
bifurcating branches of periodic solutions of (1.1) which have the zero-Hamiltonian
property. To do so, we shall presume that a periodic solution of (1.1) has period T ,
where

T =
2π

µ

and µ is a priori unknown. Upon setting

t = µx,

a simple rescaling of (1.1) and (1.2) leads us to consider the two-parameter problem

M(u, p, µ) ≡ µ4u′′′′ + pµ2u′′ + Fu(u) = 0,(3.1)

ψ(g(u, p, µ)) ≡ δ

(
µ4u′u′′′ − 1

2
µ4u′′2 +

1

2
pµ2u′2 + F (u)

)
= 0,(3.2)

where primes now denote differentiation with respect to t. With regard to (2.1), ψ
corresponds to δ, and g is the Hamiltonian which appears in (3.2); again we shall
write H = M × ψ(g) so that (3.1)–(3.2) corresponds to the equation H = 0.

A natural setting for the application of these Theorems 2.1 and 2.2 is in the space
of even functions of period 2π. Accordingly, let Xe =

{
u ∈ C4

2π : u(t) = u(−t)} and
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Ye =
{
u ∈ C0

2π : u(t) = u(−t)}, both endowed with their usual norms. We also define
the even-odd subspaces

Xeo =

{
u ∈ Xe : u

(π
2
− t

)
= −u

(π
2

+ t
)}

and

Yeo =

{
u ∈ Ye : u

(π
2
− t

)
= −u

(π
2

+ t
)}

.

For a given subspace S ⊂ Z ⊂ L2(0, π) we define its orthogonal complement by

S⊥ = {u ∈ Z :
∫ 2π

0
u(t)s(t)dt = 0 ∀s ∈ S}. In this way we obtain a map H ∈ Cω(Xe×

R
2, Ye×R), and if F is even, then H also provides a map H ∈ Cω(Xeo×R

2, Yeo×R).

3.2. Simple bifurcation from p = 2. The following theorem shows that the
zero-Hamiltonian problem associated with (1.1) has a simple bifurcation point to a
locally unique and smooth branch of solutions from the point p = 2.

Theorem 3.1. Suppose that assumption (F) holds. Then there is an interval
I ⊂ R and a unique analytic branch β �→ (u(β), p(β)) ∈ Xe × R defined on I of
nontrivial even periodic solutions of (1.1) with zero Hamiltonian and period T (β).
Moreover, u(β) 
= 0 if β 
= 0,

T (0) = 2π, u(0) = 0, p(0) = 2, and ‖u(β)(t) − β cos(t)‖C4 = O(β2)

as β → 0. If F is even, then the function t �→ u(β)(t) is an element of Xeo for all
β ∈ I.

Proof. To prove this result we apply Theorem 2.2 to H(u, p, µ) = 0 with X = Xe

and Y = Ye. Let L(p, µ)[a] ≡ duM(0, p, µ)[a] = µ4a′′′′ + pµ2a′′ + a, and note that the
bilinear form ψ(d2

uug(0, p, µ)[a, b]) from Theorem 2.2 is given by

B(p, µ)[a, b] = δ
(
µ4(a′b′′′ + a′b′′′ − a′′b′′) + pµ2a′b′ + ab

)
.

In order to verify the hypotheses of Theorem 2.2 let us seek a nonzero solution
a ∈ Xe to L(p, µ)a = 0, that is,

µ4a′′′′ + pµ2a′′ + a = 0, δ
(
µ4(2a′a′′′ − (a′′)2) + pµ2(a′)2 + a2

)
= 0.

Since a is even and of period 2π, we seek solutions of the form a(t) = cos(mt), where
m is an integer. This provides the equations α4 − pα2 + 1 = 0,−α4 + 1 = 0, where
α = µm, whence α2 = 1, so that p = 2 and µ = 1/m. Seeking the solution of minimal
period, we may set m = 1 and thus define k(t) ≡ cos(t) and record the fact that
ker(L(2, 1)) = 〈k〉. Let us also define K ≡ k for the purposes of Theorem 2.2 and
note for the moment that k is an even-odd function.

We now form the decompositions Xe = 〈k〉 ⊕ 〈k〉⊥ and Ye = 〈k〉 ⊕ 〈k〉⊥, so that

U = 〈k〉⊥ ⊂ Xe and V = 〈k〉⊥ ⊂ Ye in accordance with Theorem 2.2, and define the
projection Q : L2(0, 2π) → R by

(Qu)(t) =
1

π

∫ 2π

0

u(t)k(t)dx, u ∈ L2(0, 2π),

and let P = I − k · Q. Now, ψ(d3
uupg(0, p, µ)[a, b, 1]) = Bp(p, µ)[a, b] = δ(µ2a′b′),

d3
uuµg(0, p, µ)[a, b] = δ(4µ3(a′b′′′ + a′b′′′ − a′′b′′) + 2pµa′b′), and d2

uµM(0, p, µ)[a] =
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Lµ(p, µ)[a] = 4µ3a′′′′+2pµa′′. Finally, d2
upM(0, p, µ)[a, 1] = µ2a′′. Thus the remaining

hypothesis of Theorem 2.2 is satisfied if the operator matrix D is nonsingular. On
inspection of the relevant derivatives we find

D =

⎛
⎝ P ◦ L(2, 1) 0 0

0 −1 0
∗ 0 −4

⎞
⎠ ∈ BL(U × R

2, V × R
2),

where P ◦L(2, 1) : U → V is an isomorphism and ∗ is irrelevant to the calculation at
hand. It follows that D is an isomorphism, and the result follows.

The second part of the theorem is proven in exactly the same way, simply observ-
ing the change of space, using Xeo rather than Xe. The uniqueness of the bifurcating
branch in both Xe and Xeo, and the fact that Xeo ⊂ Xe, implies that u(β) ∈ Xeo if
F is even.

Remark 1. In order to demonstrate that the application of Theorem 2.2 is not
limited to fourth-order problems, we present the following example. In [33] the au-
thors study the problem of finding periodic solutions for sixth-order problems using
a variational approach, of which

uvi + 5uiv + pu′′ + u− u3 = 0(3.3)

is an example (see also [10]). Equation (3.3) has Hamiltonian

H ≡ 1

2
(u′′′)2 + uvu′ − uivu′′ + 5

(
u′u′′′ − 1

2
(u′′)2

)
+
p

2
(u′)2 +

1

2
u2 − 1

4
u4.(3.4)

Theorem 3.2. The points (u, p) = (0, 4 1
4 ) and (0, 1+4

√
2) are simple bifurcation

points to even periodic solutions of (3.3) with zero Hamiltonian and with period near

2π
√

2 and 2π/
√

1 +
√

2, respectively.
The proof of Theorem 3.2 is very similar to that of Theorem 3.1 and so we omit it;

note that the existence of a locally two-dimensional manifold of positive and negative
Hamiltonian solutions also follows from Theorem 2.3.

3.3. Double bifurcations from p > 2. The following result shows that the
interval [2,∞) contains a dense set of bifurcation points for (3.1)–(3.2).

Theorem 3.3. Suppose that assumption (F) holds. Then to each n,m ∈ N such
that n ≥ m+ 1 and gcd(n,m) = 1 there is an interval I ⊂ R and exactly two analytic
branches β �→ (u±(β), p±(β)) ∈ Xe×R defined on I of even periodic solutions of (1.1)
with zero Hamiltonian and period T±(β). Moreover, u±(β) 
= 0 for β 
= 0,

T±(0) = 2π
√
nm, u±(0) = 0, p±(0) =

n

m
+
m

n
,

and

‖u±(β)(t) − β (m cos(nt) ± n cos(mt)) ‖C4 = O(β2)

as β → 0.
Proof. Let us apply Theorem 2.4 to H(u, p, µ) = 0; to identify the functions k1

and k2 from Theorem 2.4, we consider the linearized problem

L(p, µ)[a] ≡ µ4a′′′′ + pµ2a′′ + a = 0
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of (3.1) with a ∈ Xe. This linear equation admits an even 2π-periodic solution of the
form a(t) = λ1 cos(mt) + λ2 cos(nt) with integer m and n, provided that α1 = (µm)2

and α2 = (µn)2 both satisfy the equation α2 − pα + 1 = 0. From this we obtain
α1α2 = 1, so that µ = µn,m ≡ 1√

nm
and p = α1 + α2, whence p = pn,m ≡ n

m + m
n .

Hence we define k1(t) ≡ cos(nt), k2(t) ≡ cos(mt), and u1 ≡ k1, u2 ≡ k2. More-
over, using ψ(d2

uug(0, pn,m, µn,m)[a, b]) = δ(−µ4
n,ma

′′b′′ + ab), we have

A =
(n2 −m2)

n2
, B = 0, and C = −A,

so that α± = ± n
m in the notation of Theorem 2.4. With Qi(v) = 1

π

∫ 2π

0
v(t)ui(t)dt for

i = 1, 2, we find d2
upM(0, pn,m, µn,m)[a, 1] = µ2

n,ma
′′ and d2

uµM(0, pn,m, µn,m)[a, 1] =
4µ3

n,ma
′′′′+2pn,mµn,ma

′′. We then evaluate the determinant from Theorem 2.4, which
is −4µ5

n,mα±n2m2(m2 − n2), and the result now follows since this is nonzero.
If F is even, then all the bifurcations which occur for p ≥ 2 are pitchforks because

u is then a solution of (3.1)–(3.2) if and only if −u is. The uniqueness properties
of Theorems 2.2 and 2.4 and symmetry then imply that the parameterization of the
solution branch satisfies −u(β) = u(−β). From this we infer that the bifurcation
diagram of ‖u(β)‖ (with any suitable norm) plotted against p(β) has a tongue-like
appearance because of the density of the union of pn,m in [2,∞).

Remark 2. Theorem 3.3 was essentially known some time ago and can be found
in an unpublished letter by J. F. Toland (1992), as referred to in [9, equation (5.1),
p. 2486] for the case Fu(u) = u − u2. This letter was communicated to the present
authors by A. R. Champneys, and we express our gratitude for his help in this matter.
A singularly perturbed version of (1.1) for this choice of nonlinearity was studied in
[15] and more recently in [16], where the authors consider both homoclinic and periodic
solutions, although the latter are not of zero Hamiltonian; see also [23].

As an aside, consider the equation

1

12
viv + v′′ + pv + v3 +

3

4
v(vv′′ + (v′)2),(3.5)

taken from [21], with first integral

H ≡ 1

12

(
v′′′v′ − 1

2
(v′′)2

)
+

1

2
(v′)2 +

p

2
v2 +

v4

4
+

3

8
(v′)2v2.(3.6)

Note that a parameter λ2 appearing in [21] has been replaced here by p. This is not
in the class of Hamiltonian systems given by (1.1), but Theorems 2.2 and 2.4 are still
applicable.

Theorem 3.4. The point p = 3 is a simple bifurcation point to even periodic
solutions of (3.5) with zero first integral and with period near π

√
2/3. For each n,m ∈

N such that n > m and gcd(n,m) = 1, the point pn,m = 12( n
m + m

n )−2 is a double

bifurcation point to such solutions with period near π
√

(n2 +m2)/3.
The proof of Theorem 3.4 is an application of Theorem 2.4, which is entirely

analogous to the proof of Theorem 3.3, so we omit the details.

3.4. Odd solutions for even F . Now let us suppose that F is an even function.
If we define the spaces of odd functions, Xo =

{
u ∈ C4

2π : u(t) = −u(−t)} and Yo ={
u ∈ C0

2π : u(t) = −u(−t)}, then H provides a map H ∈ Cω(Xo × R
2, Yo × R). This

means that one can obtain odd zero-Hamiltonian solutions of (1.1) in a manner entirely
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analogous to the way we found the even solutions. For this reason we give the following
theorem without proof.

Theorem 3.5. If assumption (F) holds and F is even, then to each n,m ∈ N

such that n ≥ m + 1 and gcd(n,m) = 1 there is an interval I ⊂ R and exactly two
analytic branches β �→ (u±(β), p±(β)) ∈ Xe×R defined on I of odd periodic solutions
of (1.1) with zero Hamiltonian and period T±(β) = 2π/µ±(β). Moreover, upm(β) 
= 0
for β 
= 0,

T±(0) = 2π
√
nm, u±(0) = 0, p±(0) =

n

m
+
m

n
,

and

‖u±(β)(t) − β (m sin(nt) ± n sin(mt)) ‖C4 = O(β2)

as β → 0.
Of course, there is little point in formulating a version of Theorem 3.1 in this

context, since that theorem already tells us that a branch of odd solutions of (1.1)
can be found by shifting time.

It is possible to formulate an extension of the results proven in this section by
considering a smooth one-parameter family of reversible vector fields on R

n which
possesses a trivial branch of equilibrium solutions and a first integral. One could use
Theorems 2.2 and 2.4 to formulate sufficient conditions for the bifurcation of zero-
energy symmetric periodic solutions. However, for brevity we have not done this, and
we restrict our attention to the properties of fourth-order systems.

3.5. Disjointness properties of solution sets. Motivated by Theorems 3.1
and 3.3, we define the following nonempty sets, assuming (F) to be true. Let

Σ ≡ {(u, p, µ) ∈ Xe × R × R : H(u, p, µ) = 0, u 
= 0, µ > 0} ,(3.7)

and let Σ denote the closure of Σ in Xe × R
2. For any pair (n,m) ∈ N × N such that

gcd(n,m) = 1, let C(n,m) be the maximal connected subset of Σ which contains the
point (u, p, µ) = (0, pn,m, µn,m), and define the functional ν : Σ → (2,∞) by

ν(u, p, µ) = ‖u‖C4 + |p| + |µ| + 1

|µ| .(3.8)

Also, let

Σ+ = {(u, p, µ) ∈ Σ : p > 0},(3.9)

Σ+ be the closure of Σ+, and C+(n,m) be the maximal connected subset of C(n,m)∩
Σ+ which contains the point (u, p, µ) = (0, pn,m, µn,m).

We continue with a simple lemma which is used in the subsequent analysis.
Throughout this section, # is used to represent the cardinality of a set, and we
introduce a potential V (u, u′′) by writing (3.2) as

−µ2u′
(
µ2u′′′ +

p

2
u′
)

= V (u, u′′) ≡ −1

2
µ4u′′2 + F (u).

Lemma 3.1. Suppose that n,m ≥ 1 are distinct integers; then #{t ∈ [0, π] :
n cos(nt) ±m cos(mt) = 0} = max(n,m) and #{t ∈ [0, π] : m cos(nt) ± n cos(mt) =
0} = min(n,m).
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The following two theorems provide bifurcation invariants that are invaluable to
the study of the global nature of Σ.

Theorem 3.6. If assumption (F) holds and F (u) > 0 for u 
= 0, then the
mapping

ι1 : Σ → N; (u, p, µ) �→ #{t ∈ [0, π] : u(t) = 0}

is continuous and satisfies ι1(C(n,m)\{(0, pn,m, µn,m)}) ≡ min(n,m).
We postpone the proof of this theorem until after the following preliminary lemma.
Lemma 3.2. Let (uk, pk, µk) ⊂ Σ be a sequence with (uk, pk, µk) → (u, p, µ) ∈ Σ,

and suppose that there is a pair of sequences (t1k), (t
2
k) ⊂ [0, 2π] such that |t1k− t2k| → 0

and u′k(t
1,2
k ) = 0. Then uk(t

1
k)uk(t

2
k) > 0 for sufficiently large k.

Proof. For definiteness we assume that t1k < t2k and, seeking a contradiction, we
also assume that uk(t

1
k)uk(t

2
k) ≤ 0; we initially also assume that uk(t

1
k) < 0 < uk(t

2
k).

By the mean-value theorem there is a Tk ∈ (t1k, t
2
k) such that u′′k(Tk) = 0, and taking

the limit k → ∞ gives the existence of a T such that u′(T ) = u′′(T ) = 0. Using (3.2)
yields F (u(T )) = 0 and therefore u(T ) = 0, and since u is not identically zero, it
follows that u′′′(T ) 
= 0.

We now assume without the loss of any generality that ‖uk‖C4 ≤ ‖u‖C4 + 1 ≡ B
and that 1

2µ ≤ µk ≤ 3
2µ. By the smoothness of F and since F (0) = Fu(0) = 0, we

may assume that there is a C such that

|F (w)| ≤ C2

2
|w|2 if |w| ≤ B.

Since u′k(t
1,2
k ) = 0, we have V (uk, u

′′
k) = − 1

2µ
4
k(u

′′
k)2 + F (uk) = 0 at t1,2k , and

therefore

|u′′k | ≤
C

µ2
k

|uk| ≤ 4C

µ2
|uk| at t1,2k .(3.10)

If we define the function v(t) = V (uk(t), u
′′
k(t)), then the mean-value theorem gives

the existence of a τk ∈ (t1k, t
2
k) with v′(τk) = 0. From (3.10) the orbit of uk is a

smooth curve in the u, u′′-plane that connects (uk, u
′′
k)(t1k) (in the left half-plane) to

(uk, u
′′
k)(t2) (in the right half-plane) with end-points in the region {(u, u′′) : |u′′| ≤

4C
µ2 |u|}. By considering the tangent vector (u′, u′′′) of this planar curve, it follows that

there is a τ̂k ∈ (t1k, t
2
k) such that

|u′′′k (τ̂k)| ≤ 4C

µ2
|u′k(τ̂k)| .(3.11)

When we take the limit k → ∞, it follows from the estimate

sup
(t1

k
,t2

k
)

|u′k| ≤ |t2k − t1k| sup
(t1

k
,t2

k
)

|u′′k |

that u′′′k (τ̂k) → 0. We therefore find that the limiting solution u satisfies u′′′(T ) = 0,
which is a contradiction.

If the signs of uk at t1,2k are inverted, so that uk(t
2
k) < 0 < uk(t

1
k), then the

argument given above holds unchanged. If exactly one of the two values uk(t
1,2
k ) is

zero for all k, then the argument holds in a similar way: in this case the curve in the
u, u′′-plane connects the origin to the other point. The existence of τ̂k satisfying (3.11)
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follows as before. If both of the values of uk are zero, then the curve is closed, and
again a value of τ̂k can be found satisfying (3.11). This concludes the proof of the
lemma.

Proof of Theorem 3.6. Suppose that (u, p, µ) ∈ Σ and that (uk, pk, µk) ⊂ Σ
satisfies (uk, pk, µk) → (u, p, µ) in C4 × R

2.
We first note that if four or more zeros of uk collide (counted according to algebraic

multiplicity), say 0 ≤ t1k ≤ t2k ≤ t3k ≤ t4k ≤ 2π are all zeros of uk that converge to
T , then from the mean-value theorem we have u(T ) = u′(T ) = u′′(T ) = u′′′(T ) = 0,
contradicting the assumption that u 
= 0.

On the other hand, if two or more zeros collide, then from the mean-value theorem
again there is a T such that u′(T ) = 0 and therefore u′′(T ) = 0 by (3.2). In order to
avoid the same contradiction as above, necessarily u′′′(T ) 
= 0. This implies that the
zero of u at t = T is topologically transverse, which rules out the possibility that two
transverse zeros coalesce.

We therefore are left with two cases: either three simple zeros collide or two zeros
collide of which one is a double zero. In the first case, three simple zeros, there exist
t1,2k such that u′k(t

1,2
k ) = 0 and t1,2k → T as k → ∞, and since the zeros are transverse,

we can assume that uk has opposite signs at t1k and t2k. The conclusions of Lemma 3.2
show that this situation leads to a contradiction. In the second case we choose t1k to be
the nonsimple zero, and τk ∈ (t1k, t

2
k) to be an intermediate point such that u′(τk) = 0.

Again an application of Lemma 3.2 leads to a contradiction, and therefore the number
of zeros of uk eventually equals that of u. This shows that ι1 is continuous on Σ and
therefore constant on connected components of Σ.

In order to evaluate ι1(u, p, µ) for (u, p, µ) ∈ C(n,m) with u 
= 0 we use the
representation of C(n,m) at bifurcation given in Theorem 3.3. From Lemma 3.1
there results

‖u±(β)(t) − β (m cos(nt) ± n cos(mt)) ‖C4 = O(β2),

and hence #{t ∈ [0, π] : u±(β)(t) = 0} = min(n,m) follows for sufficiently small and
nonzero β, and the theorem is proven.

Theorem 3.7. If assumption (F) holds and F (u) > 0 for u 
= 0, then the
mapping

ι2 : Σ+ → N; (u, p, µ) �→ #{t ∈ [0, π] : u′′(t) = 0}
is continuous.

Proof. Let (u, p, µ) ∈ Σ+, and suppose that there is a T ∈ [0, 2π] such that

u′′(T ) = u′′′(T ) = 0.

The zero-Hamiltonian condition (3.2) then gives

1

2
pµ2u′(T )2 + F (u(T )) = 0,

and the hypotheses on F ensure that u′(T ) = 0 and u(T ) = 0. It follows that u = 0,
which contradicts the definition of Σ+, and this contradiction implies that the zeros
of u′′ are transverse. Consequently, if (un, pn, µn) ⊂ Σ+ is a sequence such that
(un, pn, µn) → (u, p, µ) in Σ+, then u′′n → u′′ in the C1 topology. Hence u′′n has
the same number of zeros as u′′ for all sufficiently large n, which shows that ι2 is
continuous as claimed.
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Theorem 3.7 immediately implies that ι2 is constant on connected components of
Σ+, and from this observation we deduce the following.

Corollary 3.1. Suppose that (F) holds and uFu(u) ≥ 0 for all u ∈ R; then
Σ+ = Σ, and as a consequence, C+(n,m) = C(n,m). Moreover,

ι2(C(n,m)\{(0, pn,m, µn,m)}) = max(n,m),

so that C(n,m) ∩ C(n′,m′) is empty unless (n,m) = (n′,m′).
Proof. Multiplying (3.1) by u and integrating gives

pµ2

∫ 2π

0

(u′)2dt =

∫ 2π

0

µ4(u′′)2 + uFu(u)dt ≥
∫ 2π

0

µ4(u′′)2dt ≥ 0.

Hence if there is a solution of (3.1)–(3.2) with p = 0 and µ > 0, it follows that
u′′ ≡ 0, so u(t) = At + B for constants A and B. As u is periodic, A = 0, and as
u must have zero Hamiltonian, F (B) = 0 is also true. The hypotheses ensure that
F (u) = 0 only when u = 0 so that B = 0, hence u(t) ≡ 0 and so Σ = Σ+, from which
C(n,m) = C+(n,m) by definition.

Since ι2 : Σ → N is continuous by Theorem 3.7, the set C defined by C ≡
C(n,m)\{(0, pn,m, µn,m)} is a connected subset of Σ, because the intersection of
C(n,m) with some small ball, C(n,m) ∩ Bδ(0, pn,m, µn,m), is path-connected for all
sufficiently small δ > 0. Hence ι2 is constant on C. In order to evaluate ι2(u, p, µ)
with (u, p, µ) ∈ C we use the representation of C+(n,m) at bifurcation from the trivial
solution described in Theorem 3.3 and then apply Lemma 3.1. From Theorem 3.3 we
have

‖u′′±(β)(t) + βmn (n cos(nt) ±m cos(mt)) ‖C2 = O(β2),

whence #{t ∈ [0, π] : u′′±(β)(t) = 0} = max(n,m) follows for sufficiently small and
nonzero β.

Finally, as (F) ensures that F is positive in a punctured neighborhood of zero, the
condition uFu(u) ≥ 0 then ensures that F (u) > 0 if u 
= 0. Applying Theorem 3.6,
we obtain ιj(C(n,m)) = ιj(C(n′,m′)) for j = 1, 2, and the last part of the corollary
follows.

Finally, we have the following theorem, which applies to path-connected subsets
of Σ, although it provides no information regarding the behavior of connected subsets
of Σ which are not path-connected.

Theorem 3.8. Suppose that F (u) > 0 for u 
= 0 and let (us, ps) be a continuous
path of solutions of (1.1), where each us is defined on a sufficiently large subset of R

and the path does not contain the equilibrium solution. If two zeros of u′s collide, then
multiplicity is preserved in and through the collision.

Proof. We may assume that all collisions occur at s = 0 and t = 0. Note that if
all us are defined on a common interval I ⊂ R, then by standard elliptic estimates the
solution curve is bounded in Ck(I ′) for any k ∈ N and any compact interval I ′ ⊂ I.
Since F is smooth, we can bound F by

|F (w)| ≤ C2w2

2
(3.12)

for, say, |w| ≤ 1.
Note that u′(0) = u′′(0) = 0 at s = 0, and therefore by (1.2), F (u(0)) = 0, which

implies u(0) = 0. The nonconstancy hypothesis on each us implies that u′′′(0) 
= 0.
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Fig. 3.1. The configuration space u, u′′ is partitioned according to the sign of V .

This proves that multiplicity is conserved in the collision. Note that the zero at
(t, s) = (0, 0) is necessarily transverse.

To show that any subsequent perturbation preserves the multiplicity we use some
ideas from the analysis of the configuration space (u, u′′) from [34, 17]; [29] contains a
simplified description that is sufficient for our purposes. The structure of the configu-
ration space and the set {V = 0} is shown in Figure 3.1. Near the origin in this plane
the set {V = 0} consists of two curves that intersect in the origin. Near the origin
the direction of these curves is bounded from above by 2C, where C is the constant
in (3.12).

At s = 0, we have u(0) = u′(0) = u′′(0), u′′′(0) 
= 0, and therefore the orbit near
t = 0 is represented in the u, u′′-plane by a curve that remains inside the set {V ≤ 0}
and intersects {V = 0}. We can choose appropriate translations of us, and small
t, s > 0, such that we have the following:

1. us(t) is defined for (t, s) ∈ Q ≡ (−t, t) × (−s, s).
2. us depends smoothly on s in C4(−t, t).
3. u′′′s (t) ≥ 0 on Q (if not then reverse time).
4. For each s ∈ (−s, s) we have ±u′′s (±t) < 0, and V (us(±t)), u′′s (±t))) < 0.

This implies that no intersections of the solutions with {V = 0} appear or
disappear through the boundary ±t.

5. u′′′s /u
′
s ≥ 4C on Q, where C is the constant in (3.12).

We write γs ≡ {(us(t), u′′s (t)) : −t < t < t}.
We now consider the alternatives for perturbation away from s = 0. First assume

that s can be chosen such that γs∩{V = 0} has only one intersection for 0 < s < s; let
this intersection be at 0 < ts < s. The lower bound on the angle of the curve γs, given
by condition 5 above, implies that γs intersects {V = 0} only at the origin in the u, u′′-
plane. Since u′0(0) = 0 and u′′′0 (0) 
= 0, the smooth dependence of us on s implies that
u′′′s (ts) 
= 0 for s close to zero; therefore the requirement u′(ts)(u′′′s (ts)+pu

′
s(ts)/2) = 0

forces u′s(ts) = 0. Combining this with us(ts) = 0 and taking the limit yields that the
zero of u′ at s = 0 is a double zero.

To cover the alternative case we assume that γs ∩ {V = 0} has at least two
intersections for a sequence 0 < sn < s, sn ↓ 0, at the points 0 < tn < τn < t. We
have limn→∞ tn = limn→∞ τn = 0. With an argument similar to the one above, it
follows that u′sn(tn) = u′sn(τn) = 0, and therefore the zero at s = 0 is of second order.

At any point where the orbit intersects {V = 0}, either u′ = 0 or u′′′ = −pu′/2.
Since at s = 0 we have u′ = 0 and u′′′ 
= 0, under perturbation of s we have u′ = 0
on the intersection of the orbit with {V = 0}. If we assume that under perturbation
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Fig. 3.2. Two forms of perturbation: (a) if the curve continues to intersect {V = 0} in the
origin, then the tangent remains vertical; (b) a translation, on the other hand, creates new zeros of
u′ and therefore also conserves multiplicity.

there is only one zero of u′ (locally), then the intersection with {V = 0} necessarily
occurs at the origin in the u, u′′-plane. Therefore the zero remains of multiplicity two.

Note that the only possible scenario is the reduction of multiplicity two to mul-
tiplicity zero. Multiplicity zero implies that while u′(0) = 0 at s = 0, this zero of u′

disappears under perturbation. An inspection of the u, u′′-plane (Figure 3.2) shows
that such a perturbation is only possible if u′′′ + pu′/2, which is non-zero at s = 0,
jumps to zero for s 
= 0. This contradicts the assumption of continuous dependence
of the curve of solutions in Ck on the parameter s.

4. Global bifurcations. Let us now briefly state some results from global real-
analytic bifurcation theory for one-parameter problems as developed in [6]. The utility
of this theory with respect to (2.1) is the fact that Lemma 2.1 identifies either p or µ
which can be used as the bifurcation parameter. So, supposing that U ⊂ R ×X is a
given set and that F : R ×X → Y is a real analytic map, define the set

S = {(λ, x) ∈ U : F (λ, x) = 0, dxF (λ, x) ∈ Iso(X,Y )}.

Throughout this section the space R ×X is endowed with the norm |λ| + ‖x‖X , and
a pair (λ, x) ∈ S is said to be a regular solution of F (λ, x) = 0. While the theory
developed in [6] is more powerful than we require, we shall use the following result,
which is the statement of Theorem 7.4(iii) of this reference.

Theorem 4.1. Let ν : R ×X → [0,∞) be a given function, and suppose that
(i) S is nonempty and U ∩S is open in S, where S ≡ {(λ, x) ∈ R×X : F (λ, x) =

0},
(ii) dxF (λ, x) is Fredholm of index zero for all (λ, x) ∈ U ,
(iii) subsets of S on which ν is bounded have compact closure,
(iv) there are δ > 0, λ0 ∈ R, and an analytic function h : Nδ(λ0)\{λ0} → S,

where Nδ(λ0) is a half-neighborhood of λ0, such that limλ→λ0 h(λ) = 0 but
(λ0, 0) 
∈ U ,

(v) if A0 is the maximal path-connected subset of S which contains the graph of
h and if (ξn) ⊂ S ∩ U is any convergent sequence with ξn → ξ 
∈ U and
supn ν(ξn) <∞, then ξ = (λ0, 0) and ξn ∈ A0 for all n sufficiently large.

Under conditions (i)–(v) the maximal connected component of S ∩U that contains A0

contains a path-connected subset P on which ν is unbounded.
If we recall the definition of the sets Σ and Σ+ in (3.7) and (3.9), respectively,

then the reasoning in Corollary 3.1 ensures that Σ+ = Σ if uFu(u) ≥ 0 for all u ∈ R.
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From this observation we can obtain the following lemma.
Lemma 4.1. Suppose that (F) holds and uFu(u) ≥ 0 for u ∈ R; then ν(u, p, µ)

(defined in (3.8)) is unbounded on a path-connected subset of C(1, 1).
Proof. Let us verify the hypotheses of Theorem 4.1 in turn, where ω = µ− 1, x =

(u, ω) and we write λ in place of p. To keep the notation consistent with Theorem 4.1,
let F ≡M × ψ(g) (the symbol H was used for this previously) and

U ≡ {(λ, x) = (p, u, ω) ∈ R ×Xe × R : ω > −1, u 
= 0, ι1(u) = ι2(u) = 1}.

We remark that S ⊂ Σ ⊂ S, S ∩ U ⊂ Σ and the space X referred to in Theorem 4.1
is Xe × R and Y is Ye × R.

(i) It follows from Lemma 2.1 that S is nonempty. (The argument assumes that
du,p(M ×ψ(g)) is an isomorphism from Lemma 2.1, for if this is not the case, then we
can repeat the argument of this proof using µ for λ rather than p.) One can see that
the set U ∩ S is open in S as follows. Suppose, seeking a contradiction, that U ∩ S is
not open in S, so there is a (λ0, x0) = (p0, u0, ω0) ∈ S ∩ U and a sequence (λn, xn) =
(pn, un, ωn) ∈ S\U such that (λn, xn) = (pn, un, ωn) → (λ0, x0) = (p0, u0, ω0).

Since u0 
= 0 and un
C4

→ u0, it follows that un 
= 0, and as ω0 > −1, then ωn > −1,
both for all sufficiently large n. Since ι1 and ι2 are continuous functions on Σ and
Σ+, respectively, and Σ = Σ+ by the hypothesis on F , then ι1(un) → ι1(u0) = 1 as
n→ ∞; but since ι1 is integer-valued, this means that ι1(un) ≡ 1 for all n sufficiently
large. Similar reasoning applies to ι2. Consequently, (λn, xn) ∈ U for all n sufficiently
large, which is the required contradiction.

(ii) The operator dxF (λ, x) has the form

(
duM(u, p, µ) 0

0 0

)
+K ∈ BL(Xe × R, Ye × R),

where K is a continuous operator that has rank at most two and duM(u, p, µ)[h] =
µ4h′′′′+pµ2h′′+Fu(u)h ∈ BL(Xe, Ye). However, the latter is a compact perturbation
of the operator

E : h �→ µ4hiv + θh, E ∈ BL(Xe, Ye).

Since µ > 0, using a Fourier series argument, one can easily show that there is a θ such
that E is an isomorphism of the given spaces. Consequently dxF (λ, x) is a compact
perturbation of a Fredholm mapping of index zero, and therefore is itself Fredholm of
index zero.

(iii) If (un, pn, ωn) ⊂ S is a sequence such that ωn = µn − 1 > −1 and

ν(un, pn, µn) = ‖un‖C4 + |pn| + |ωn + 1| + 1

|ωn + 1|
is bounded, then there are p0 and ω0 such that ωn → ω0 ≥ −1 and pn → p0 ≥ 0.
Now ω0 
= −1 by the boundedness of ν, and therefore uvn = −(ωn + 1)−4(pn(ωn +
1)−2u′′′n + Fu(un)u′n) is also bounded, whence (un) converges to some u0 ∈ C4 as the
embedding C5 ↪→ C4 is compact, and therefore (pn, un, ωn) converges in R×Xe ×R.

(iv) This part of the theorem follows from Theorem 2.2 and Lemma 2.1, where
the bifurcating branch is represented by an analytic curve of regular solutions.

(v) If a ν-bounded sequence (ξn) = (pn, un, ωn) ⊂ S ∩ U satisfies ξn → ξ =
(p0, u0, ω0) 
∈ U , then the only viable possibility is that u0 = 0, so that (p, µ) =
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(p0, ω0 + 1) is a bifurcation point from the trivial solution of (3.1)–(3.2). However,
the only point at which such a bifurcation occurs into the set S is at the point
(u, p, µ) = (0, 2, 1), so that (u, ω) = (0, 0). Hence property (v) is satisfied if A0 is
defined to be the maximal path-connected subset of S which contains the graph of
the bifurcating branch from Theorem 3.1. In this case let us note that λ0 = 2.

This concludes the proof.
Now define the functional on Xe × R

2 by

ν(u, p, µ) = ‖u‖C4 + |p| + 1

|µ| .

In order to obtain a result analogous to the global Hopf bifurcation theorem of [1], we
show that ν can actually become unbounded on C(1, 1) if and only if ν is unbounded
on C(1, 1).

Theorem 4.2. If (F) is satisfied and uFu(u) ≥ 0, then C(1, 1) contains a path-
connected ν-unbounded subset.

Proof. Suppose that ν is unbounded on C(1, 1) but that ν is bounded on this set;
it follows that there is a sequence (un, pn, µn) ∈ C(1, 1) such that ‖un‖C4 + |pn| is
bounded, un 
= 0 for each n, and |µn| → ∞. However, since

∫ 2π

0

pµ2(u′′)2dt ≥ 1

2π

∫ 2π

0

pµ2(u′)2 =
1

2π

(∫ 2π

0

µ4(u′′)2 + uFu(u)dt

)

≥ 1

2π

∫ 2π

0

µ4(u′′)2dt

holds for any nontrivial solution in C(1, 1) by the Poincaré inequality, it follows that
µ2
n ≤ 2πpn, which is a contradiction. Therefore, by Lemma 4.1, ν is unbounded on

a path-connected subset of C(1, 1), and the above contradiction implies that ν must
also be unbounded on this set.

This theorem represents a partial global trichotomy for bifurcations of periodic
orbits of (1.1), which says that the solution continuum C(1, 1) either has an unbounded
sequence of orbits in phase-space or is unbounded with respect to either the parameter
(p) or with the period (as occurs in the blue-sky bifurcation [13]). Unfortunately, due to
assumption (v) of Theorem 4.1, it has not proven possible to use the same techniques
to study the global existence properties of the branches C(n,m) for n > 1.

5. Local secondary fold bifurcations. Another advantage of the approach
taken in this paper as opposed to the shooting methods previously used in [35, 36] is
that we can investigate the geometry of each bifurcating continuum by introducing
an unfolding parameter, ε, into (3.1)–(3.2). We will now show that degeneracies
present in (3.1)–(3.2) at ε = 0 can unfold to give secondary fold bifurcations along
the bifurcation branch when ε 
= 0.

To illustrate this we shall consider (1.1) for the particular case given in (1.3).
This has been studied in [19] (see also [12] for an asymptotic analysis of this problem
using multiple scale techniques) as a model for an elastic rock layer on a restiffening
foundation, with corresponding Z2-symmetric ODE

Mε(u, p, µ) ≡ µ4u′′′′ + pµ2u′′ + u− ε(u3 − u5)(5.1)

and even Hamiltonian

Hε(u, p, µ) ≡ µ4u′u′′′ − 1

2
µ4u′′2 +

1

2
pµ2u′2 +

1

2
u2 − ε

(
1

4
u4 − 1

6
u6

)
.(5.2)
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As in the proof of Theorem 2.2, and therefore also in Theorem 3.1, we can obtain
a local representation of the bifurcating branch of the zero-Hamiltonian problem as-
sociated with (5.1) from the bifurcation point p = 2 in the form uε(β) = β(k+ρε(β)),
where ρε(β) = O(β) for fixed ε and is an analytic function of both β and ε near
(β, ε) = (0, 0); here k(t) = cos(t). We now proceed with a calculation to find the Tay-
lor expansion of ρε(β) in order to determine the local geometry of the set of branches
Cε(1, 1). Throughout this section we shall write

rε(β) = βρε(β).

It is important to note that the existence of bifurcating solutions for this problem
close to p = 2, as determined by Theorem 3.1, does not depend upon the value of ε.
Indeed, using the implicit function theorem we simply find that for each ε sufficiently
small and for suitable m,n, there is a bifurcating branch from (p, µ) = (pn,m, µn,m)
and this branch (that is, the local parametric representation of this branch) varies
analytically with ε. This property also holds at ε = 0, where the branches are pairs
of lines. We also note that since Fε(u) is an even function of u for each ε, rε(·) is odd
and pε(·) and µε(·) are even functions, forming a pitchfork bifurcation at p = 2.

We start our analysis by listing the Fréchet derivatives of the operator Mε:
D1. duMε(u, p, µ)[h] = µ4h′′′′ + pµ2h′′ + h− ε(3u2 − 5u4)h,
D2. d2

uMε(u, p, µ)[h1, h2] = −εh1h2(6u− 20u3),
D3. d3

uMε(u, p, µ)[h1, h2, h3] = −εh1h2h3(6 − 60u2),
D4. d4

uMε(u, p, µ)[h1, h2, h3, h4] = 120εvh1h2h3h4,
D5. d5

uMε(u, p, µ)[h1, h2, h3, h4, h5] = 120εh1h2h3h4h5,
where hi ∈ Xe for each i = 1, . . . , 5.

We denote the first derivative of Mε(u, p, µ) evaluated on the trivial solution
branch u = 0 by L ≡ duMε(0, 2, 1); this operator is independent of ε. Suppose further

that P is the projection of Ye onto ran(L) = 〈k〉⊥ along 〈k〉; now define

L(p, µ) ≡ duMε(0, p, µ).

We can solve the projected differential equation P ◦ Nε(βk + r, p, µ) = 0 for
some function r = rε(β, p, µ) near (β, p, µ, ε) = (0, 2, 1; 0) using the implicit function
theorem (we refer to the proof of Theorem 2.2 for details). From the uniqueness
properties of the implicit function theorem if follows that rε(0, p, µ) ≡ 0, and if we
repeatedly differentiate the identity PMε(βk + rε(β, p, µ), p, µ) = 0 with respect to β
then we shall obtain the Taylor coefficients of rε. This is a tedious exercise, so we
omit the details, but one eventually obtains

R1. P (duMε[k + dβr]) ≡ 0,
R2. P (d2

uMε[k + dβr, k + dβr] + duMε[d
2
βr]) ≡ 0,

R3. P (d3
uMε[k+dβr]

3+2d2
uMε[d

2
βr, k+dβr]+d

2
uMε[d

2
βr, k+dβr]+duMε[d

3
βr]) ≡ 0,

R4. P (d4
uMε[k + dβr]

4 + 6d3
uMε[d

2
βr, k + dβr, k + dβr] + 3d2

uMε[d
3
βr, k + dβr] +

3d2
uMε[d

2
βr, d

2
βr] + duMε[d

4
βr] + d2

uMε[k + dβr, d
3
βr]) ≡ 0,

R5. P (d5
uMε[k+dβr]

5 +10d4
uMε[d

2
βr, [k+d3

βr]
3]+10d3

uMε[d
3
βr, k+dβr, k+dβr]+

3d2
uMε[d

4
βr, dβr] + 10d2

uMε[d
3
βr, d

2
βr] + 2d2

uMε[d
4
βr, dβr] + duMε[d

5
βr]) ≡ 0.

Evaluating these expressions at β = 0, that is, u = rε(0, p, µ) = 0, yields the
following information. From R1 we have PL(p, µ)[k + dβr(0, p, µ; ε)] = 0, and be-
cause L(p, µ)k = (µ4 − pµ2 + 1)k ∈ 〈k〉 we have dβrε(0, p, µ) ≡ 0. The expression
d2
βrε(0, p, µ) = 0 then follows from R2. Also, R3 gives

PL(p, µ)d3
βrε(0, p, µ) = 6εP (k3),(5.3)



22 BEARDMORE, PELETIER, BUDD, AND AHMER WADEE

so that the third derivative of rε is not zero in general at (u, p, µ; ε) = (0, 2, 1; ε),
but d3

βrε(0, p, µ) is seen to provide an O(ε) contribution to the Taylor expansion of
rε. Using Taylor’s theorem to expand rε(β, p, µ) with respect to β and using the
symmetry properties of rε (it is odd with respect to β), we may write rε(β, p, µ) =
β3

6 R
1
ε (p, µ) +O(β5) for some operator R1

ε (p, µ) with range in 〈k〉⊥.
We can determine R1

ε as follows. In (5.3) seek an even Fourier series solution
which is also orthogonal to k in Xe of the form R1

ε (p, µ) =
∑∞

j=2 aj cos(jt), where the

coefficients aj remain to be determined. Since k3(t) = 1
4 (cos(3t) + 3 cos(t)), it follows

that the only nonzero coefficient is a3 and

R1
ε (p, µ) =

3ε

2

cos(3·)
81µ4 − 9pµ2 + 1

.

Using R4 and setting β = 0, we find d4
βrε(0, p, µ) ≡ 0, which of course also follows

from symmetry. We may evaluate d5
βrε(0, p, µ) from R5, which simplifies to give

P (d5
uMε[k]

5 + 10d3
uMε[k, k, d

3
βrε] + duMε[d

5
βrε]) ≡ 0.

To find d5
βrε(0, p, µ) we solve the following linear equation for w ∈ Xe ∩ 〈k〉⊥,

µ4w′′′′ + pµ2w′′ + w + P

[
60k2 3ε2

2

cos(3·)
81µ4 − 9pµ2 + 1

+ 120εk5

]
= 0,(5.4)

and then d5
βre(0, p, µ) = w. Since k(t)5 = 1

16 (cos(5t) + 5 cos(3t) + 10 cos(t)), k(t)2 =
1
2 (1 + cos(2t)), and cos(3t) cos(2t) = 1

2 (cos(5t) + cos(t)), we also solve (5.4) using a
Fourier series expansion. Accordingly, taking w(t) =

∑∞
j=2 wj cos(jt), we find that

all the coefficients wj are zero, except when j = 3 or j = 5. In these cases

(81µ4 − 9pµ2 + 1)w3 + 150ε− 45ε2

81µ4 − 9pµ2 + 1
= 0

and

(625µ4 − 25pµ2 + 1)w5 + 30ε− 90ε2

2(81µ4 − 9pµ2 + 1)
= 0.

It follows that rε(β, p, µ) = β3

6 R
1
ε (p, µ) + β5

120R
2
ε (p, µ) + β7

720d
7
βrε(0, p, µ) + O(ε2β3),

where

R2
ε (p, µ) = −ε

(
150

4(81µ4 − 9pµ2 + 1)
cos(3·) +

30

4(625µ4 − 25pµ2 + 1)
cos(5·)

)
+O(ε2).

One can show by further differentiating that d6
βrε(0, p, µ) ≡ 0, as we expect from

symmetry, and the equation which determines d7
βrε(0, p, µ) shows this term to be of

order O(ε2). Higher derivatives of rε will also be of order O(ε2).
Now pε(β) and µε(β) are even functions of β, and applying the zero-Hamiltonian

constraint gives

µ4δ((k + ρε)
′′2) = δ

(
(k + ρε)

2 − 1

2
εβ2(k + ρε)

4 +
1

3
εβ4(k + ρε)

6

)
,(5.5)
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using a prime to denote d
dt . Seeking an expansion of the bifurcation branch about

(ε, β) = (0, 0), we write

pε(β) = 2 + ε
(
P1β

2 + P2β
4
)

+O(ε2)(5.6)

and

µε(β) = 1 + ε
(
ω1β

2 + ω2β
4
)

+O(ε2),(5.7)

where P1, P2, ω1, and ω2 are real numbers to be determined. The highest power of β
which exists in these expansions at O(ε) is the quartic because of the Taylor series we
have found for rε(β). This is clear from (5.5), which contains terms of order εβ2 and
εβ4 but not εβ6 or higher.

To determine ω1 and ω2 we substitute the expressions for ρε = re
β and µε into (5.5).

Using δ(ρ) =
(

1
256β

2 − 23
4608β

4
)
ε + O(ε2) and δ(ρ′′) =

(− 9
256β

2 + 215
4608β

4
)
ε + O(ε2),

we then find 1
(81µ4−9pµ2+1) = 1

64 + O(ε) and 1
(625µ4−25pµ2+1) = 1

576 + O(ε). Setting

v = β(k + ρ) ∈ 〈k〉 ⊕ 〈k〉⊥ in (5.1) and projecting the result onto the span of k(t) =
cos(t) we obtain

µ4 − pµ2 + 1 − εβ2 1

π

∫ 2π

0

k((k + ρ)3 − β2(k + ρ)5)dt = 0.(5.8)

We now use this information to equate coefficients at the appropriate orders to find

P1 = −3

4
, P2 =

5

8
, ω1 =

−9

64
, and ω2 =

5

48
.(5.9)

5.1. Conditions for a fold bifurcation. The solution branch Cε(1, 1) deter-
mined above, which branches from p = 2, can be continued from bifurcation in p for
p < 2, or in µ for µ < 1. When considered as a function of p, the branch has a fold
bifurcation at some point, which we label pF , and the same behavior is observed when
the branch is continued in µ. The numerical calculations presented in the next section
also indicate that the solution branch is restricted to the parameter range p > pF and
µ > µF , although we have no proof of this claim.

We can now prove the following theorem.
Theorem 5.1. There is a neighborhood I ⊂ R of zero such that if ε ∈ I, the

zero-Hamiltonian branch Cε(1, 1) associated with (5.1), which bifurcates from p = 2
at µ = 1, has a fold which occurs with respect to p at

pF (ε) = 2 − 9

40
ε+O(ε2).(5.10)

There is also a fold in Cε(1, 1) with respect to µ which occurs at

µF (ε) = 1 − 243

5120
ε+O(ε2).(5.11)

Proof. Using (5.6), (5.7), and (5.9), a fold bifurcation with respect to p occurs
on the Cε(1, 1) branch when the conditions dβpε(β) = 0 and d2

ββpε(β) 
= 0 are met.
Applying the implicit function theorem when ε 
= 0, these conditions are satisfied
when β2 = β2

F ≡ 3/5 + O(ε), giving (5.10).
Similarly, a fold bifurcation with respect to µ occurs on the branch Cε(1, 1) when

dβµε(β) = 0 and d2
ββµε(β) 
= 0, and, provided ε 
= 0, these conditions are satisfied

when β2 = 27/40 + O(ε), giving (5.11).
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Fig. 6.1. Bifurcations of zero-Hamiltonian periodic solutions from p = 2, p = 2 1
2
, and p = 3 1

3
,

with p plotted horizontally against ‖u′‖L∞ vertically; e are even solutions, o are odd solutions, and
b are solutions with broken symmetry.

6. Numerical computations.

6.1. Preliminaries. We now describe a series of numerical calculations to de-
termine solutions of the unscaled differential equation (1.1) with the restiffening foun-
dation whose primary solution branch was studied in the previous section:

u′′′′ + pu′′ + u− ε(u3 − u5) = 0.(6.1)

We augment this with the periodic boundary conditions u(0) = u(T ), u′(0) = u′(T ),
and u′′′(0) = u′′′(T ) and specify the phase by requiring u′(0) = 0. Finally, we impose
the constraint that the Hamiltonian is zero, so that

u′′(0) = ±
√

2(u(0)2/2 − ε(u(0)4/4 − u(0)6/6),(6.2)

and we set ε = 1/2 for the purposes of computation.
In (6.2) the positive root corresponds to the solution which is tangential to the

rescaled eigensolution e−(x) ≡ n cos(x
√
m/n) − m cos(x

√
n/m) at the bifurcation

point (u, p, µ) = (0, pn,m, µn,m), whereas the negative root corresponds to the solution

which is tangential to the eigensolution e+(x) ≡ n cos(x
√
m/n) + m cos(x

√
n/m).

In order to follow the solution branches in p and to detect fold bifurcations, the
collocation-based code AUTO [14] was used.

6.2. Calculation of the solution branches. We now illustrate three cases
regarding the bifurcation of solutions of (6.1): the case (n,m) = (1, 1), for which
there is a unique bifurcating branch; the case (n,m) = (2, 1), with p2,1 = 2 1

2 and
µ2,1 = 1√

2
, and (n,m) = (3, 1), for which p3,1 = 3 1

3 and µ1,3 = 1√
3
. Broadly speaking,

higher values of n and m lead to similar solution branches.
Figure 6.1 shows the bifurcation branches which are proven to exist in Theo-

rems 3.1 and 3.3, with p plotted against ‖u′‖L∞ . The (1, 1) branch has the form
described in Theorem 5.1, and for the p = 2 1

2 and p = 3 1
3 cases one sees a similar

geometry in that the branches initially bifurcate to the left, have fold bifurcations,
and then persist for all values of p to the right of the fold point.

The following comments are in order regarding Figure 6.1 and the three points
p = 2, 2 1

2 , and 31
3 . Due to the Z2-symmetry of (6.1) and of the symmetry properties

of the eigenfunctions when (n,m) = (2, 1), if u(t) is one even solution on the (2, 1)
branch, then so too is −u(t + T/2). Therefore, in order to obtain a second distinct
periodic solution, we apply Theorem 3.5 to give the existence of two branches of odd
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Fig. 6.2. Solutions (u(s) for 0 ≤ s ≤ 1) bifurcating from p = 2, away from the bifurcation
point. In accordance with Theorem 2.2 these are even about zero and odd about one-quarter.

Fig. 6.3. (left) Even solutions (u(s) for 0 ≤ s ≤ 1) bifurcating from p = 2 1
2
, away from the

bifurcation point. (right) Odd solutions bifurcating from p = 2 1
2
.

Fig. 6.4. Period of solutions from Figure 6.1 ((1, 1) branch is top-left, (2, 1) top-right, (3, 1)
bottom) with µ = 2π/period plotted horizontally and ‖u′‖L∞ vertically.
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Fig. 6.5. Solutions (u(s) for 0 ≤ s ≤ 1) bifurcating from p = 3 1
3
, away from the bifurcation point.

solutions. Again, one of these branches of odd solutions can be obtained from the
other by symmetry, and we therefore have plotted one of each even and odd branch
in Figure 6.1. The solutions on this branch are shown in Figure 6.3.

Figures 6.2, 6.3, and 6.5 each show several solutions chosen from Figure 6.1 on
the branches which connect to p = 2, p = 2 1

2 , and p = 3 1
3 , respectively, although the

domain of each solution has been normalized to unity. (The information regarding the
period of the solutions is given in Figure 6.4.) If we examine Figure 6.5, we notice that
each of the solutions is even about zero and odd about one quarter. Consequently, the
two branches of the solutions shown are in fact identical, up to a shift and a reflection,
to the odd solutions which are obtained using Theorem 3.5.

Since F (u) and uFu(u) are both positive for nonzero u when ε = 1/2, the global
bifurcation theorem (Theorem 4.2) applies to the (1, 1) branch, and the nodal proper-
ties are preserved along the resulting global branch in accordance with Theorems 3.6,
3.7, and 3.8. This is illustrated in each of Figures 6.2, 6.3, and 6.5.

Finally, note that the (1, 1) branch in Figure 6.1 appears to have no further
bifurcations, whereas the (2, 1) and (3, 1) branches both have symmetry-breaking
secondary bifurcation points. What is interesting about the resulting branches of
unsymmetric solutions is that they form connections between the (2, 1) and (3, 1)
branches. This indicates that it would be futile to seek generalizations of the results
of section 3.5 to include the space of all periodic zero-Hamiltonian solutions of (1.1)
and that the disjointness properties of the solution branches obtained in this paper
are peculiar to spaces of symmetric solutions.
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