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Abstract. We extend the differential-algebraic equation (DAE) taxonomy by assuming that
the linearization of a DAE about a singular equilibrium has a particular index-2 Kronecker normal
form. A Lyapunov–Schmidt procedure is used to reduce the DAE to a quasilinear normal form which
is shown to posses quasi-invariant manifolds which intersect the singularity. In turn, this provides
solutions of the DAE which pass through the singularity.
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1. Preliminaries. We consider the differential-algebraic equation (DAE)

ẋ = f(x, y),(1.1)

g(x, y) = 0,(1.2)

where x ∈ R
n (n ≥ 2), y ∈ R

m, and f : U → R
n and g : U → R

m are both Cω

(analytic) in an open neighborhood, U , of (0, 0) in R
n+m. The motivation for this

paper is to understand the orbit structure of (1.1)–(1.2) near (0, 0), which is assumed
to be a singular equilibrium in the sense that

A1. f(0, 0) = 0, g(0, 0) = 0,
A2. N(dyg(0, 0)) = 〈k〉 , kT k = 1, where N(dyg(0, 0)T ) = 〈u〉.

We shall also make the following assumptions, which we introduce now in order to
make the presentation as transparent as possible:

A3. dxg(0, 0)dyf(0, 0)k �∈ R(dyg(0, 0)),
A4. d(f × g)(0, 0) ∈ GL(Rn+m), and
A5. d2

yyg(0, 0)[k, k] �∈ R(dyg(0, 0)).

There is one further condition to be imposed which will be introduced at the appro-
priate point in the paper. The regularity assumptions are imposed on f and g for
brevity, and one could consider problems of finite smoothness in a similar manner.

First, let us define some terminology associated with (1.1)–(1.2). The constraint
manifold for (1.1)–(1.2) is the set C = {(x, y) ∈ U : g(x, y) = 0}, and the singularity
is S = {(x, y) ∈ C : det (dyg(x, y)) = 0}.

The main result of the paper is that one can use A1–A5 to reduce the DAE (1.1)–
(1.2) to a quasilinear normal form of dimension n. This normal form is a differential
equation which can be written as

α̇ = L0α + O(2),(1.3)

s(α, β)β̇ = β + O(2),(1.4)

∗Received by the editors September 20, 2000; accepted for publication (in revised form) by
V. Mehrmann January 16, 2002; published electronically June 12, 2002.

http://www.siam.org/journals/simax/24-1/37866.html
†Department of Mathematics, Imperial College, South Kensington, University of London, London,

England, SW7 2AZ (r.beardmore@ic.ac.uk).
‡School of Mathematical Sciences, University of the West of England, Frenchay Campus, Bristol,

England, BS16 1QY (robert.laister@uwe.ac.uk).

106



DAE NEAR SINGULAR EQUILIBRIUM 107

where (α, β) ∈ R
n, L0 ∈ GL(Rn−1) is some mapping and s(0, 0) = 0. We can then

understand the nature of solutions of (1.3)–(1.4), and hence of the original DAE, by
rescaling time and applying standard invariant manifold theory to the resulting ODE.
The only proviso to be met in this process is that solutions of (1.3)–(1.4) will require
a degree of differentiability that is not imposed by the formulation (1.1)–(1.2).

1.1. Background. A standard uniqueness theorem for differential equations im-
plies that for any (x0, y0) ∈ C\S there exist α, ω > 0 and a unique Cω solution
of (1.1)–(1.2), (−α, ω) → R

n+m; t �→ (x(t), y(t)) ∈ C\S, such that (x(0), y(0)) =
(x0, y0). The goal of this paper is therefore to try to understand the nature of solu-
tions which encounter the singularity and to understand how uniqueness can break
down.

The usual alternative for the global continuation of solutions of ODEs states that
solutions either exist for all time or else become unbounded in finite time. There is
a third alternative for solutions of DAEs: the solutions terminate at a singularity [8].
However, it is not true that all solutions which encounter the singularity must termi-
nate there; some may be continued [11, 12]. Indeed, the DAE taxonomy described in
these references gives conditions under which there are submanifolds of S where such
a continuation is possible.

In [3], the authors discuss the possibility of using the DAE taxonomy to investigate
a type of shock wave in a magneto-hydrodynamics equation which makes this paper
also relevant to that study. In [7] März gives conditions to ensure that the semilinear
DAE

Aż + Bz = ϕ(z), ‖ϕ(z)‖ = O(‖z‖2) as z → 0,(1.5)

has a Lyapunov stable equilibrium. In particular, the author supposes that the Kro-
necker index of the matrix pencil (A,B) is two, and in due course we shall write
(1.1)–(1.2) in this form.

1.2. Notation. The term manifold is taken as a synonym for graph and the
tangent space of a manifold M at a point z ∈ M is written Tz(M). If U is a linear
space, then for each u ∈ U we shall write the map v �→ uT v as uT , and the span of u
is written as 〈u〉 = {µu : µ ∈ R}. Also, ‖u‖2 := uTu and a hash symbol (#) denotes
set cardinality.

Let (A,B) ∈ L(RN ) × L(RN ) be a square matrix pencil. It is regular if there
exists a λ ∈ C such that det(λA+B) �= 0. The spectrum of (A,B) is σ(A,B) := {λ ∈
C : det(λA+B) = 0}, and (A,B) is hyperbolic if σ(A,B) contains no purely imaginary
elements. We write C

+ = {z ∈ C : Re(z) > 0}, and C
− is defined similarly.

Let us stipulate the degree of smoothness of solutions of (1.1)–(1.2) as follows.
If I ⊂ R is open, a solution of (1.1)–(1.2) is a map t �→ (x(t), y(t)) ∈ C1(I,Rn) ×
C0(I,Rm), such that (1.1)–(1.2) is satisfied for all t ∈ I. A set K ⊂ C is said to be
quasi-invariant for (1.1)–(1.2) if for each (x(0), y(0)) ∈ K there is at least one solution
of (1.1)–(1.2), (x, y) : I → C, such that (x(t), y(t)) ∈ K for all t ∈ I.

In order to discuss solutions of the quasilinear problem (1.3)–(1.4), we must im-
pose some degree of differentiability. So, let I ⊂ R be a bounded interval and let
us note at this stage that the setting for solutions of (1.3)–(1.4) will be the space of
Lipschitz functions. Thus, let us denote the Sobolev space

Wn,∞(I,R) =
{
β : I → R : β, β̇, . . . , β(n) ∈ L∞(I)

}
,
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endowed with the standard norm, ‖u‖Wn,∞ =
∑n

j=0 ‖u(j)‖L∞ , where a dot and su-
perscript (j) represent the derivative in a weak sense. Due to the inequality

|u(x) − u(y)| ≤ |x− y|‖u‖W 1,∞ ∀x, y ∈ I,

we may consider elements of Wn,∞(I,R) as being those functions with a Lipschitz
continuous nth derivative.

1.3. A Kronecker normal form. In [2] there is a Kronecker normal form
(KNF) which will provide the basis for the construction of the quasilinear normal
form (1.3)–(1.4). First, let us define the matrices

M :=

[
I 0
0 0

]
and L :=

[
A B
C D

]
∈ L(Rn+m).

We then have the following result from [2] concerning the KNF of (M,L).
Theorem 1.1. Suppose that n ≥ 2 and detL �= 0. If N(D) = 〈k〉 for some

nonzero k ∈ R
m such that CBk �∈ R(D), then there are nonsingular transformations

P and Q such that

PMQ =


 Iu 0 0

0 0 0
0 C0 0


 and PLQ =


 A−1

0 0 0
0 1 0
0 0 Im


 ,

where C0 : R → R
m is a linear map such that C0(1) = k. If we write N(DT ) = 〈u〉

and U =
〈
CTu

〉⊥
, then A0 ∈ GL(U) and σ(M,L) = 1/σ(A0), where both PMQ and

PLQ are elements of L(U ⊕ R ⊕ R
m).

If one assumes A1–A6, it follows from Theorem 1.1 that the linear DAE obtained
from linearizing (1.1)–(1.2) at the zero equilibrium has index 2.

1.4. An underlying vector field. By writing z = (x, y) ∈ R
n+m and setting

L =

[
A B
C D

]
:=

[
dxf(0, 0) dyf(0, 0)
dxg(0, 0) dyg(0, 0)

]
,(1.6)

we may write (1.1)–(1.2) as the semilinear problem

Mż − Lz = F (z),(1.7)

where the Cω mapping F is defined by Lz + F (z) = (f × g)(z) and F (z) is O(2) at
zero.

Now consider (1.2) along a solution of (1.1)–(1.2) which lies in C\S. Differenti-
ating this constraint with respect to time we find

ẏ = dyg(x, y)−1dxg(x, y)f(x, y).

By defining the variable τ by

dτ

dt
=

1

det dyg(x(t), y(t))
, τ(t0) = τ0,

we can reduce (1.1)–(1.2) to a vector field in the new time-scale τ :

x′ = f(x, y)det(dyg(x, y)),(1.8)

y′ = adj(dyg(x, y))dxg(x, y)f(x, y),(1.9)
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where a prime (′) denotes d
dτ .

This procedure gives a smooth vector field for which C is an invariant manifold,
and any invariant set of (1.8)–(1.9) in C is a quasi-invariant set for (1.1)–(1.2). More-
over, the orbits of (1.8)–(1.9) coincide geometrically with those of (1.1)–(1.2), and this
allows us to infer the behavior of (1.1)–(1.2), even at the singularity. This approach
is used in [11] as the basis for the DAE taxonomy.

This approach can be useful, as in the following result which shows that when
orbits of (1.8)–(1.9) are transverse to S at some point, that singular point is an impasse
point. First, let us define

∆(x, y) := det(dyg(x, y)).

Proposition 1.2. Suppose that τ �→ (x(τ), y(τ)) is a solution of (1.8)–(1.9) with
initial condition (x(0), y(0)) = (x0, y0) ∈ S. If

d

dτ
∆(x(τ), y(τ))

∣∣∣∣
τ=0

�= 0,

then there is a t∗ ∈ R such that (1.1)–(1.2) has exactly two solutions, (x(t), y(t)),
which are both defined on either [t∗, t∗ + T ) or (t∗ − T, t∗] for some T > 0 and which
satisfy (x(t∗), y(t∗)) = (x0, y0). Moreover, ‖ẏ(t)‖ → ∞ as t → t∗.

Proof. From Theorem 2.1 of [9], we have to show that there is some nonzero
k ∈ R

m such that N(dyg(x0, y0)) = 〈k〉, dxg(x0, y0)f(x0, y0) �∈ R(dyg(x0, y0)) and
d2
yyg(x0, y0)[k, k] �∈ R(dyg(x0, y0)).

Define δ(τ) := ∆(x(τ), y(τ)), so that δ(0) = 0. Differentiating we have

δ′(τ) =
d

dτ
∆(x(τ), y(τ))

= dx∆(x(τ), y(τ))x′(τ) + dy∆(x(τ), y(τ))y′(τ)

= −dx∆ · ∆ · f + dy∆ · (adj dyg) · dxg · f.
Therefore δ′(0) = dy∆ (adj dyg) dxg f |(x0,y0)

, which is nonzero by assumption. Since

the dimension of N(dyg(x0, y0)) is greater than or equal to two if and only if the adju-
gate adj(dyg(x0, y0)) is the zero mapping, we have δ′(0) = 0 if dim N(dyg(x0, y0)) ≥ 2.
Therefore N(dyg(x0, y0)) = 〈κ〉 for a nonzero κ ∈ R

m. Now apply Lemma 3 from [1] to
deduce that R(adj dyg(x0, y0)) = 〈κ〉 and N(adj dyg(x0, y0)) = R(dyg(x0, y0)). Using
Lemma 1 from [1] we have

dy∆(x, y)[·] = det′(dyg)
[
d2
yyg(x, y)[·]] = tr

(
(adj dyg)d2

yyg(x, y)[·]) ∈ L(Rm,R),

where det′ is the derivative of the determinant. Hence

δ′(0) = tr
(
(adj dyg)d2

yyg [(adj dyg)dxg f(x0, y0)]
)
.

We now use the simple null-space of the derivative dyg to conclude that if

dxg [f(x0, y0)] ∈ R(dyg(x0, y0)),(1.10)

then δ′(0) = 0, and (1.10) cannot be true. It follows that there is a nonzero l0 such
that (adj dyg)dxg f(x0, y0) = l0κ. Therefore δ′(0) = l0 tr

(
(adj dyg)d2

yyg(x0, y0)[κ]
)
.

Now define the linear mapping

T := (adj dyg)d2
yyg(x0, y0)[κ];
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then R(T ) ⊂ 〈κ〉 and Ty ≡ κ-T y for some - ∈ R
m. Hence σ(T ) = {0, -Tκ} so that

-Tκ = tr(T ). Using Lemma 3 from [1] again, if d2
yyg(x0, y0)[κ, κ] �∈ R(dyg(x0, y0)),

then Tκ �= 0 from where δ′(0) �= 0, and the result follows.
Generally, y(t) has the form

y(t) = O(t− T∗)1/2

as t → T∗ at an impasse point. In the degenerate diffusion literature, solutions which
have this form, where t represents a spatial variable, are said to be sharp solutions
[10].

2. A quasilinear normal form. The principle tool in our approach to under-
standing the flow of (1.1)–(1.2) is given in this section and is based on the following
idea. Rather than differentiating the constraint (1.2) to obtain a vector field, suppose
instead that we eliminate (1.2) directly by applying the implicit function theorem.
Clearly, one cannot solve the constraint for y as a function of x near (0, 0), but since
dg(0, 0) has full rank then C = g−1(0) is a manifold and the information contained
in (1.1) will define trajectories on it. However, the way in which the implicit function
theorem is used is crucial, and the location of the singularity must emerge from this
process. If we choose the correct decomposition of the ambient space in order to apply
this Lyapunov–Schmidt reduction, then we can limit the way in which the singularity
appears in the reduced problem.

In fact, Theorem 1.1 gives a decomposition through which we can track the effect
of the singularity on solutions, and this in turn will allow us to find solutions which
are unaffected by the presence of the singularity.

First we prove a preliminary lemma.
Lemma 2.1. Suppose that A1–A5 hold; then C is a manifold of dimension n,

and S is a codimension-1 submanifold of C.
Proof. Let N(DT ) = 〈u〉 for some nonzero u ∈ R

m and note that CTu �= 0 by

A4; recall from A2 that N(D) = 〈k〉. Write y = αk + κ ∈ 〈k〉 ⊕ 〈k〉⊥ = R
m and form

the decomposition R
m = 〈u〉 ⊕ 〈u〉⊥. Let P : R

m → 〈u〉 and I − P : R
m → 〈u〉⊥ be

orthogonal projections, and write x = λCTu + ξ ∈ 〈
CTu

〉⊕ 〈
CTu

〉⊥
.

Then g(x, y) = 0 ∈ R
m if and only if (I − P + P )g(x, y) = 0, which suggests that

we define the mapping Γ : R × 〈k〉⊥ × R × 〈
CTu

〉⊥ → 〈u〉⊥ × R by

Γ(α, κ, λ, ξ) :=

[
(I − P )g(λCTu + ξ, αk + κ)

uT g(λCTu + ξ, αk + κ)

]
.

Now

dκ,λΓ(0, 0, 0) =

[
(I − P )D|〈k〉⊥ (I − P )CCTu

uTD
∣∣
〈k〉⊥ uTCCTu

]
=

[
(I − P )D|〈k〉⊥ ∗

0 ‖CTu‖2

]
,

where (I − P )D|〈k〉⊥ is a bijection. Hence one can apply the implicit function theorem

to solve g(λCTu + ξ, αk + κ) = 0 for κ = κ(α, ξ) and λ = λ(α, ξ) in a neighborhood
of the origin of R

n+m.
To locate S we must solve g(x, y) = 0, det (dyg(x, y)) = 0, and these are satisfied

in some neighborhood of the origin if and only if

ĝ(α, ξ) := det
(
dyg(λ(α, ξ)CTu + ξ, αk + κ(α, ξ))

)
= 0.(2.1)
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Now ĝ is Cω and ĝ(0, 0) = 0, so that by Lemma 1 of [1], using the fact that dαλ(0, 0) =
0 and dακ(0, 0) = 0, we have dαĝ(0, 0) = tr((adjD)d2

yyg(0, 0)[k]). Using Lemma 3 of
[1] we have R(adjD) = 〈k〉, so that tr((adjD)d2

yyg(0, 0)[k]) coincides with the only
nonzero element of σ((adjD)d2

yyg(0, 0)[k]). But d2
yyg(0, 0)[k, k] �∈ R(D) = N(adjD)

and therefore (adjD)d2
yyg(0, 0)[k, k] = ηk for some η �= 0. Because dαĝ(0, 0) = η, we

may locally solve ĝ = 0 for α = α(ξ) by the implicit function theorem.

2.1. The main result. From the following result we can deduce many properties
concerning the flow of (1.1)–(1.2).

Theorem 2.2. Assume A1–A5 hold and recall U =
〈
CTu

〉⊥ ⊂ R
n. There is

a Cω-diffeomorphism χ : B(0, 0) ⊂ U × R → C, where B(0, 0) is a neighborhood of
(0, 0), with the following properties. The map (x(·), y(·)) is a solution of (1.1)–(1.2)
in U with kT y(·) ∈ W 1,∞(I,R) if and only if (x(t), y(t)) = χ(α(t), β(t)), where (α, β)
satisfies

α̇ = L0α + ρ0(α, β),(2.2)

s(α, β)β̇ = β + ρ1(α, β),(2.3)

with (α, β) ∈ C1(I, U) ×W 1,∞(I,R) and (2.2)–(2.3) satisfied for a.e. t ∈ I.
The map L0 ∈ GL(U) satisfies σ(L0) = σ(M,L) and ρ0×ρ1 : B(0, 0) → U ×R is

Cω and O(2) at zero. Moreover, s : B(0, 0) → R is Cω and χ(s−1(0) ∩B(0, 0)) = S,
s(0, 0) = 0, and dβs(0, 0) �= 0. Consequently, Σ := s−1(0) ⊂ U × R is an (n − 1)-
dimensional manifold.

Proof. Using Theorem 1.1 we may write R
n = U ⊕ 〈Bk〉 and R

m = 〈k〉 ⊕ 〈k〉⊥.

Now write x = x0 + x1Bk ∈ U ⊕ 〈Bk〉 and y = y1k + y0 ∈ 〈k〉 ⊕ 〈k〉⊥.
As in (1.7), we can write (1.1)–(1.2) as

ẋ = Ax + By + F(x, y),(2.4)

0 = Cx + Dy + G(x, y),

where F and G are O(2) at (0, 0). Hence, the constraint (1.2) becomes

g(x, y) = g(x1Bk + x0, y1k + y0)

= x1CBk + Cx0 + Dy0 + G(x1Bk + x0, y1k + y0)

=: Γ(x1, x0, y1, y0)

= 0.

Now define the linear mapping ∆ ∈ L(R × 〈k〉⊥ ,Rm) by

∆[a, b] := d(x1,y0)Γ(0)[a, b] = aCBk + D|〈k〉⊥ b

for a ∈ R and b ∈ 〈k〉⊥. Since 〈u〉 = N(DT ), then ∆[a, b] = 0 implies auTCBk = 0 so
that a = 0. Since Db = 0 therefore follows and because b lies in a space complementary
to 〈k〉, we find that b = 0 too. Since ∆ is thus an injection of finite-dimensional spaces
of the same dimension, it is a bijection. One can therefore solve g(x, y) = 0 locally
and uniquely for Cω functions X and Y such that x1 = X(x0, y1) and y0 = Y (x0, y1).

Now define the local diffeomorphism χ̄ ∈ Cω (U × R,C) by

χ̄(x0, y1) := (x0 + X(x0, y1)Bk, y1k + Y (x0, y1)) .
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Denote, from (1.6),

L−1 =

[
A1 B1

C1 D1

]
∈ L(Rn+m);(2.5)

define (F0×G0) := L−1(F ×G); and note from [2] that U = R(A1). Using Theorem 7
from [2] we find that

C1Bk = k,N(A1) = 〈Bk〉 , Bk �∈ R(A1).

Recall also that the restricted map A0 := A1|R(A1)
∈ GL(U) satisfies σ(M,L) =

σ(A−1
0 ).
Multiplying (2.4) by L−1 we can write (1.1)–(1.2) as

A1ẋ = x + F0(x, y),(2.6)

C1ẋ = y + G0(x, y).(2.7)

By forming the decomposition F0(x, y) = Fr(x, y) + Fb(x, y)Bk ∈ U ⊕ 〈Bk〉, where
Fb(x, y) = uTCF0(x, y)/uTCBk and Fr = F0 −FbBk, we obtain

A1ẋ = A1(ẋ1Bk + ẋ0)

= A1ẋ0

= x1Bk + x0 + Fb(x, y)Bk + Fr(x, y).

By projecting this onto U along 〈Bk〉, we then obtain

A1ẋ0 = x0 + Fr(x0 + X(x0, y1)Bk, Y (x0, y1) + y1k).

But A0 is the restriction of A1 to R(A1), so that

ẋ0 = A−1
0 x0 + ρ(x0, y1),(2.8)

where ρ(x0, y1) = A−1
0 Fr(x0 + X(x0, y1)Bk, Y (x0, y1) + y1k) is a Cω function and

O(2) at the origin.
From (2.7) one may write C1ẋ = ẋ1C1Bk + C1ẋ0 = y0 + y1k + G0(x, y). Taking

the inner product of this with k yields

ẋ1 + kTC1ẋ0 = y1 + kTG0(x, y),

recalling that kT k = 1. This implies

ẋ1 + kTC1[A−1
0 x0 + ρ(x0, y1)] = y1 + κ(x0, y1),

where κ(x0, y1) = kTG0(x0 + X(x0, y1)Bk, Y (x0, y1) + y1k).
Now we find another expression for ẋ1, using the fact that y1(·) = kT y(·) ∈ W 1,∞

by assumption gives

ẋ1 =
d

dt
X(x0, y1) = dx0

X[ẋ0] + dy1
X[ẏ1] = dx0

X[A−1
0 x0 + ρ(x0, y1)] + dy1

X[ẏ1];

then

dx0X[A−1
0 x0 + ρ(x0, y1)] + ẏ1dy1

X[1](2.9)

+kTC1[A−1
0 x0 + ρ(x0, y1)] = y1 + κ(x0, y1).
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The proof is essentially complete, but to simplify the notation a little, let us write

L0 := A−1
0 , p := x0, q := y1, s̄(p, q) := dqX(p, q)[1],

and a := −kTC1A
−1
0 . From (2.9) we find a function r, given by r(p, q) = κ(p, q) −

(kTC1 + dx0X(p, q))ρ(p, q) − dx0X(p, q)A−1
0 p, such that

ṗ = L0p + ρ(p, q), s̄(p, q)q̇ = aT p + q + r(p, q).(2.10)

We claim that

s̄(0, 0) = 0, dq s̄(0, 0)[1] = −uT d2
yyg(0, 0)[k, k]/uTCBk,(2.11)

and

dps̄(0, 0)[p] = −uT d2
xyg(0, 0)[p, k]/uTCBk(2.12)

for all p ∈ U and q ∈ R. To prove this claim, we use the fact that

g(X(p, q)Bk + p, qk + Y (p, q)) ≡ 0;

differentiating and evaluating this expression at zero yield (2.11) and (2.12).
Now define new coordinates (α, β) := (p, aT p + q), and let

χ(α, β) := χ̄(α, β − aTα), s(α, β) := s̄(α, β − aTα).

This provides the Cω functions ρ0 and ρ1 such that (p, q) satisfies (2.10) if and only
if (α, β) satisfies (2.2)–(2.3).

Since S and χ(Σ) have dimension equal to n − 1, to prove χ(Σ ∩ B(0, 0)) = S
it suffices to prove that χ(Σ ∩ B(0, 0)) ⊂ S, and we know from Lemma 2.1 that C
is an n-dimensional manifold containing (0, 0) and S is a codimension-1 submanifold
of C, also containing (0, 0). Thus, let (x, y) = (x0 + x1Bk, y0 + y1k) ∈ C\S satisfy
s(x0, y1) = 0. One can solve g(x, y) = 0 uniquely for y = y(x) near this point
by the implicit function theorem. Hence, locally, g(x, y1) = g(x, y2) = 0 implies
y1 = y2 = y(x).

Define the smooth function w : R
2 → R by

w(θ, τ) := θ −X(x0, τ),

and note that w(x1, y1) = 0. By definition, dτw(x1, y1) = −s(x0, y1) = 0, dθw(x1, y1)
= 1, and when (x, y) is of sufficiently small norm we may assume without the loss
of any generality that d2

ττw(x1, y1) �= 0 because dqs(0, 0) �= 0. By the saddle-node
bifurcation theorem there are two distinct solution branches of w(θ, τ) = 0 on which
τ = τ±(θ), say. Now suppose that a sequence (xm1 ) ⊂ R satisfies xm1 → x1 as m →∞,
so that the two sequences in R

n+m given by ((x0 + τ±(xm1 )Bk, y0 + y1k))m lie in C\S
for m large enough. By uniqueness it follows that τ+(xm1 ) ≡ τ−(xm1 ), a contradiction.
Therefore, no such (x, y) exists and the result is proven.

In light of Theorem 2.2, we define the following terminology. Suppose that I ⊂ R

is a bounded, open interval. We call a map (α, β) ∈ C1(I, U) × W 1,∞(I,R) a sharp
solution of (2.2)–(2.3) if this differential equation holds for almost every t ∈ I, provided
that β̇ �∈ C0(I,R). A map (α, β) ∈ C1(I, U × R) is said to be a smooth solution of
(2.2)–(2.3) if this differential equation is satisfied for all t ∈ I.
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We assume throughout, without the loss of any generality, that dβs(α, β) �= 0 for
all (α, β) ∈ Σ. Due to the fact that Σ is diffeomorphic to S and because existence
and uniqueness of (2.2)–(2.3) may break down along Σ, we shall also describe Σ as
the singularity.

For the moment let us record the fact, taken from the above proof, that

dαs(0, 0)[p] = −uT
(
d2
xyg(0, 0)[p, k] − aT p d2

yyg(0, 0)[k, k]
)
/uTCBk,

where k is defined in A2 and a is given in the proof. Let us note that the following
assumption ensures that dαs(0, 0) is a nonzero map:

A6. ∃p′ ∈ U such that d2
xyg(0, 0)[p′, k] − aT p′ d2

yyg(0, 0)[k, k] �∈ R(dyg(0, 0)).

Using Theorem 2.1 of [9] we can describe the impasse points of (2.2)–(2.3) as
follows.

Lemma 2.3. Assuming A1–A6, if (α, β) ∈ Σ satisfies β + ρ1(α, β) �= 0, then
(α, β) is an impasse point for (2.2)–(2.3).

Therefore, the set

P := {(α, β) ∈ Σ : β + ρ1(α, β) = 0}(2.13)

forms a subset of the singularity which does not necessarily contain impasse points,
but the following lemma shows that P represents a nongeneric set of singular points.

Lemma 2.4. Assuming A1–A6, the set of pseudoequilibria of (2.2)–(2.3), P ⊂
B(0, 0), is a codimension-1 submanifold of Σ.

Proof. Use the implicit function theorem to solve the system β + ρ1(α, β) =
0, s(α, β) = 0 near (α, β) = (0, 0).

Nevertheless, the following result shows that (2.2)–(2.3) is well behaved at P in
the sense that there exists a smooth solution of this quasilinear ODE through every
point in P .

Theorem 2.5. Suppose that A1–A6 hold and let r ∈ N. There is a neighborhood
B(r)(0, 0) ⊂ B(0, 0) and at least one (n−1)-dimensional, quasi-invariant Cr manifold
WR ⊂ B(r)(0, 0) of (2.2)–(2.3) such that for each (α0, β0) ∈ WR, there exists an open
interval I ! 0 and a unique Cr-solution of (2.2)–(2.3), (α, β) : I → WR such that
(α(0), β(0)) = (α0, β0). Moreover, WR ∩ Σ = P .

Proof. Make the following change of time-scale: if (α(t), β(t)) satisfies (2.2)–(2.3),
define τ by

dτ

dt
=

1

s(α(t), β(t))
, τ(t0) = τ0,

and write α(τ) = α(t(τ)), β(τ) = β(t(τ)). If a prime denotes d
dτ , then

α′ = (L0α + ρ0(α, β))s(α, β),(2.14)

β′ = β + ρ1(α, β).(2.15)

Linearizing (2.14)–(2.15) around the equilibrium point (α, β) = (0, 0), we find at least
one Cr, local center manifold WR := W c

loc. This is a quasi-invariant manifold for
(2.2)–(2.3) on which β = h(α), where h(0) = 0 and dh(0) = 0. Now suppose that
s(α0, β0) = 0 and (α0, β0) ∈ WR, and let (α(τ), β(τ)) be the solution of (2.14)–(2.15)
in WR with (α(0), β(0)) = (α0, β0). Then

β + ρ1(α, β) = β′ = dh(α)α′ = dh(α)(L0α + ρ0(α, β))s(α, β),
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and setting τ = 0 shows that WR ∩ Σ ⊆ P . However, the left-hand side of this
inclusion is given by those α for which s(α, h(α)) = 0. This equation can be solved
by the implicit function theorem, showing that WR∩Σ is also an (n−2)-dimensional
manifold. Since WR ∩ Σ and P are manifolds of the same dimension and one is
contained in the other, they coincide. The uniqueness of solutions of (2.2)–(2.3) in WR

follows from a standard ODE uniqueness theorem applied to α̇ = L0α + ρ1(α, h(α)),
with β(t) = h(α(t)).

While the existence of WR is assured from the center manifold theorem, it is not
clear that there will be only one WR with the properties outlined in Theorem 2.5.
For this reason, we cannot claim that WR is an invariant manifold, we can claim only
quasi-invariance.

The following definition is given merely for completeness, and it provides the
analogy of stable and unstable manifolds for (2.2)–(2.3).

Definition 1 (local stable and unstable sets). Let B′ ⊂ U×R be a neighborhood
of (0, 0). The local stable set W s(0, 0) ⊂ U×R is the set of (α, β) ∈ B′ such that there
exists a solution (α(t), β(t)) of (2.2)–(2.3) with (α(0), β(0)) = (α, β), (α(t), β(t)) ∈ B′

for all t ≥ 0 and (α(t), β(t)) → 0 as t →∞. The local unstable set Wu(0, 0) is defined
analogously with t ≤ 0 and the limit t → −∞ used above.

Proposition 2.6. Suppose that A1–A6 hold and that (M,L) is a hyperbolic
matrix pencil. Now define

n± := #
(
σ(M,L) ∩ C

±) ,
both assumed to be nonzero, noting n−+n+ = n−1. Then there is an invariant subset
of the stable set of (2.2)–(2.3), WRs ⊂ WR, which is an (n−)-dimensional manifold,
and an invariant subset of the unstable set of (2.2)–(2.3), WRu ⊂ WR, which is an
(n+)-dimensional manifold.

Proof. This uses the existence of the quasi-invariant manifold, WR, of (2.2)–
(2.3) on which β = h(α). The result follows since the ODE α̇ = L0α + ρ1(α, h(α))
has stable and unstable manifolds of the stated dimensions and using the fact that
σ(M,L) = σ(L0)−1 from Theorem 2.2.

Let us note that the fact that the stable and unstable sets W s,u(0, 0) associated
with (2.2)–(2.3) are not necessarily manifolds is simply due to the ellipticity of the
zero equilibrium of (2.14)–(2.15).

Now we use the remaining information in the normal form (2.2)–(2.3) to deduce
that not only are there singularity-traversing solutions contained in WR, there are
other quasi-invariant manifolds which intersect the singularity Σ.

Proposition 2.7. Suppose that A1–A6 apply. Associated with each (α, β) ∈ P
is a Cω, one-dimensional, quasi-invariant manifold of (2.2)–(2.3), WΣ(α, β), which
is transverse to both WR and Σ at (α, β). Moreover, if (α0, β0) ∈ WΣ(0, 0)\(0, 0),
there exists a T ∈ R and a solution (α(t), β(t)) of (2.2)–(2.3) on [0, T ] such that
(α(0), β(0)) = (α0, β0) and sign s(α(T ), β(T )) = −sign s(α(0), β(0)).

Proof. Suppose that (α, β) ∈ P , so that (α, β) is an equilibrium of (2.14)–(2.15).
Linearizing (2.14)–(2.15) around this equilibrium gives a smoothly parameterized
mapping T ∈ Cω (B(0, 0),L (U × R)) such that

T (0, 0) =

(
0 0
0 1

)
,

where B(0, 0) is defined in Theorem 2.2. Since 1 is an algebraically simple eigenvalue
of T (0, 0), by spectral perturbation results [5] there are Cω functions λ : B(0, 0) → R
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(a) (b)

Fig. 2.1. A typical flow near a singular equilibrium (solid dot). (a) Two instances of WR,
WR

1,2 are shown, where WΣ(0, 0) and Σ are shown transverse at (0, 0). (b) The relative positions of

Σ, WR, and WΣ(0, 0); the shaded set is
⋃

(α,β)
WΣ(α, β). Elements of Σ\P are impasse points.

and e : B(0, 0) → U × R such that λ(α, β) ∈ σ(T (α, β)), with corresponding unit
eigenvector e(α, β), such that e(0, 0) = (0, 1) and λ(0, 0) = 1. Hence we may assume
with loss of generality that λ(α, β) is positive whenever (α, β) ∈ P ∩B(0, 0). From this
it follows that each (α, β) ∈ P has an associated local unstable manifold, Wu(α, β),
which we write as WΣ(α, β).

The representation of WΣ(0, 0) is given by a graph of the form α = -(β), such
that -(0) = 0 and d-(0) = 0. Therefore, the solutions of (2.2)–(2.3) on WΣ(0, 0) are
images of the solutions of the scalar ODE

β̇ =
β + ρ1(-(β), β)

s(-(β), β)
= dβs(0, 0)−1 + O(β),

and the right-hand side of this is nonzero in a neighborhood of β = 0. Hence the
solution passes through the regular point β = 0 in finite time.

Since e(·, ·) varies smoothly, it follows without the loss of any generality that
each WΣ(α, β) is transverse to Σ if WΣ(0, 0) is transverse to Σ. Therefore, let us
calculate T0(Σ), given that T0(WΣ(0, 0)) = U × {0} ⊂ U × R. Since we may solve
s(α, β) = 0 near (0, 0) for β = β(α) such that s(α, β(α)) ≡ 0, we find dβ(0) =
−dβs(0, 0)−1dαs(0, 0) �= 0 and T0(Σ) = {(α, dβ(0)α) : α ∈ U)}. It follows that
dim(T0(Σ)⊕T0(WΣ(0, 0))) = n and therefore the manifolds Σ and WΣ(α, β) intersect
transversally at (α, β).

In [11], the authors use W sing to denote a one-dimensional, quasi-invariant man-
ifold containing the singular equilibrium. We use WΣ(α, β) (and WΣ(0, 0) is W sing)
to underline the fact that through every point on this set, there is a solution which
can be extended to the singularity Σ. (See Figure 2.1(b).)

Let us note that it is possible for a subset of WΣ(0, 0) to lie in either the stable
or unstable set associated with (2.2)–(2.3). Indeed, we shall define

WΣs(0, 0) := WΣ(0, 0) ∩W s(0, 0),

and similarly WΣu(0, 0) := WΣ(0, 0)∩Wu(0, 0). Theorem 2.8 below shows that WΣs

and WΣu are not empty if A1–A6 apply, because of the existence of sharp solutions.
Theorem 2.8. Assuming A1–A6, through the singular equilibrium of (2.2)–(2.3)

there pass two smooth solutions with (α, β) ∈ Cω × Cω and two sharp solutions with
(α, β) ∈ C1 ×W 1,∞. Consequently, WΣu(0, 0) and WΣs(0, 0) are nonempty.
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(a) (b)

Fig. 2.2. A typical flow near a singular equilibrium: (a) There are multiple instances of WR,
showing the possible lack of uniqueness of solutions along P = WR ∩ Σ. The shaded region shows
the union of all possible forward orbits of q after encountering the singularity. (b) The local stable
(WRs) and unstable (WRu) sets associated with (0, 0).

Proof. One of the Cω × Cω solutions is the trivial equilibrium solution itself.
The other smooth solution is obtained from the trajectory of (2.2)–(2.3) whose image
forms WΣ(0, 0).

Now concatenate a trajectory of (2.2)–(2.3) with initial condition on WΣ(0, 0) to
the equilibrium solution to form two sharp solutions. To see that this procedure forms
a sharp solution, consider the solution (α, β) of (2.2)–(2.3) which is zero for t ≥ 0 but
lies on WΣ(0, 0) for t ∈ (−T, 0]. Then, for t ≤ 0, from the proof of Proposition 2.7 we
have α = -(β), where -(0) = 0 and d-(0) = 0, but β̇ = (β + ρ1(-(β), β))/s(-(β), β).
It follows that β̇(0−) = 1/dβs(0, 0) �= 0 but β̇(0+) = 0, and β̇ ∈ L∞(−T, T ) for small
enough T > 0. Another sharp solution is obtained by starting on the equilibrium
solution before leaving the equilibrium along WΣ(0, 0) in an analogous manner.

An illustration of the invariant manifolds discussed in this section is given in
Figures 2.1 and 2.2.

3. Discussion. Let us consider two examples which illustrate some of the funda-
mental ideas within the paper. The first example is somewhat artificial, but it clearly
shows how smooth solutions can be concatenated to form less regular ones.

Example 1. Consider

ẋ = y, x2 + y2 = 1,(3.1)

where (x, y) = (±1, 0) are both singular equilibrium points, so that there exists a
trivial smooth solution passing through them. However, (x(t), y(t)) = (cos(t), sin(t))
is another smooth solution passing through these two points; this is precisely the
behavior we observe at a singular equilibrium in higher dimensions, with WΣ(0, 0)
playing the role of the circle of this example. The concatenated function

(x(t), y(t)) =

{
(1, 0), t ≤ 0,

(cos(t), sin(t)), t ≥ 0,

is a solution of (3.1) of class C1 ×W 1,∞. Indeed, because ẏ(0−) = 0 and ẏ(0+) = −1
we have y �∈ C1(R), although ẏ ∈ L∞(R).

This example demonstrates that the multiplicity of sharp solutions can be much
greater than that of smooth solutions. This arises in this particular instance because
of the existence of a connecting orbit between the two singular equilibria. So, in order
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to form a continuum of sharp solutions, one can simply “wait” for some arbitrary
time on arrival at the singular equilibrium before continuing around the circle to the
other singular equilibrium.

Example 2. Consider a degenerate form of the Fitzhugh–Nagumo equation:

ut =
1

2
(u2)xx + u(1 − u) + v,(3.2)

vt = u− v, x ∈ R, t > 0.(3.3)

Scalar problems of this type can be found in [4, 10], where the authors are in-
terested in the support of the waves, which may be finite, semi-infinite, or infinite.
This equation is related to the much-studied Fitzhugh–Nagumo equation, except for
the inclusion of the degenerate diffusive term. By seeking a traveling-wave solution of
(3.2)–(3.3) which connects (u, v) = (0, 0) to itself, we obtain the quasilinear problem(

cu− 1

2
(u2)z

)
z

= u(1 − u) + v,(3.4)

cvz = u− v, u(±∞), v(±∞) = 0, z = x + ct,(3.5)

where c > 0 is the wave speed. To study (3.4)–(3.5) as a DAE, we require u ∈ C0 to
also satisfy u2 ∈ C1 and cu− 1

2 (u2)z ∈ C1, rather than simply allowing u ∈ C2. This
ensures that the resulting solutions are weak solutions if one considers (3.4)–(3.5) in
a standard weak formulation [6]. A simple example of a function which satisfies such
a regularity requirement is u(t), where u(t) = 0 for t < 0 and u(t) = t for t ≥ 0 and
c = 1.

We can manipulate this system to see explicitly how the results of the previous
sections apply in this specific case. Thus, put U = u−W and write (3.4)–(3.5) as a
DAE,

wz = cW,(3.6)

cUz = (W + U)(1 −W − U) + v,(3.7)

cvz = W + U − v,(3.8)

0 = w − 1

2
(U + W )2,(3.9)

to which A1–A6 apply if c �= 0. The constraint manifold for this problem is C =
{(w,U, v,W ) ∈ R

4 : (U + W )2 = 2w}, and the singularity is S = {(w,U, v,W ) ∈ C :
U + W = 0}. Differentiating (3.9), we obtain a quasilinear ODE which is analogous
to (2.2)–(2.3):

(U + W )Wz = cW − (U + W )[(U + W )(1 − U −W ) − v]c−1,(3.10)

cvz = W + U − v,(3.11)

cUz = (W + U)(1 −W − U) + v,(3.12)

which, upon rescaling time, gives

W ′ = cW − (U + W )[(U + W )(1 − U −W ) − v]c−1,(3.13)

cv′ = (U + W )[W + U − v],(3.14)

cU ′ = (U + W )((W + U)(1 −W − U) + v).(3.15)
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Fig. 3.1. (a) A solution with a head and a tail when WRs intersects WRu. (b) A solution with
a tail but no head when WΣs intersects WRu. In this case, the solution is identically zero ahead of
the wave.

Fig. 3.2. A solution when WΣs intersects WΣu, and multiple waves arise. The solution is zero
between each wave in the region Ω.

It is straightforward to show that at the singular equilibrium point (W, v, U) =
(0, 0, 0), (3.10)–(3.12) has at least one quasi-invariant manifold, WR, described by a
graph of the form W = h(U, v). For c > 0, there is another quasi-invariant manifold,
WΣ(0, 0), on which U = H1(W ) and v = H2(W ). Now, restricting (3.4)–(3.5) induces
a local dynamical system on WR, given by the restricted flow of an ODE of the form

cvz = U − v + O(2),(3.16)

cUz = U + v + O(2).(3.17)

Since the equilibrium of this system, (U, v) = (0, 0), has a stable and unsta-
ble manifold, it follows that (3.4)–(3.5) has at least two one-dimensional invariant
manifolds, WRs and WRu, within its stable and unstable sets. The arrival time of
solutions at the zero equilibrium along these manifolds must be infinite, by standard
ODE uniqueness results, as applied to (3.16)–(3.17).

On WΣ(0, 0), using (3.10), we have an ODE

Wz =
cW + O(W 2)

W + H1(W )
= c + O(W )

for small |W |. One can verify directly that S and WΣ(0, 0) intersect transversally in
C, so that there is at least one singularity-traversing smooth solution of (3.4)–(3.5).
It follows that there are also sharp solutions which start and end at the equilibrium,
existing on either side of the singularity. These are again formed by concatenating
the trivial equilibrium solution to the trajectory which forms WΣ(0, 0).

While this does not provide any information as to whether a homoclinic orbit
exists in (3.4)–(3.5), the intersections of the various manifolds involved will yield
different types of traveling waves, as depicted in Figures 3.1 and 3.2.
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