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NORMAL FORMS, QUASI-INVARIANT MANIFOLDS, AND
BIFURCATIONS OF NONLINEAR DIFFERENCE-ALGEBRAIC

EQUATIONS∗
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Abstract. We study the existence of quasi-invariant manifolds in a neighborhood of a fixed point
of the difference-algebraic equation (ΔAE) F (zn, zn+1) = 0, where F : R

2m → R
m is a smooth map

satisfying F (0, 0) = 0. We demonstrate the existence of quasi-invariant manifolds on which one can
define forward and backward orbits of the ΔAE under mild assumptions on its linearization at the
fixed point z = 0. Indeed, by assuming this linearization to be a regular matrix pencil, one obtains
a functional equation satisfied by invariant manifolds which can be solved using an extension of the
contraction mapping to spaces that satisfy an interpolation property. If the ΔAE under study is
permitted to depend smoothly on a parameter, we then obtain a Neimark–Sacker bifurcation theorem
as a corollary that can be deduced from the existence of a normal form for nonlinear ΔAEs.
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1. Introduction. The purpose of this paper is to provide an analysis of the
invariant manifolds and bifurcations found in a class of difference-algebraic equations
(ΔAEs) of the form

F (zn, zn+1) = 0;(1.1)

the nomenclature and chosen acronym for (1.1) have been taken from [4, 22]. We
assume that F (= F (z, z̄)) : R

2m → R
m is a smooth map satisfying F (0, 0) = 0 and

say that (1.1) is singular because the partial derivative dz̄F (0, 0) is not an isomorphism
from R

m to itself. The purpose of the first part of this paper is to provide conditions
under which (1.1) has suitably defined invariant manifolds that contain the fixed point
z = 0, where the main difficulty to overcome in this analysis is the fact that forward
orbits of (1.1) are not necessarily uniquely defined in a neighborhood of the fixed
point.

The second part of the paper utilizes the existence of the aforementioned invariant
manifolds to investigate the presence of bifurcations in ΔAEs in the sense that by
extending F to be a Ck-mapping of the form F : R

2m × R → R
2m, where k ≥ 5, we

examine the structure of invariant sets in the family of ΔAEs

F (zn, zn+1, μ) = 0.(1.2)

Our rationale is taken from bifurcation theory for maps which leads to the fol-
lowing question. If F (0, 0, μ) = 0 for all μ in some interval and the one-parameter
family of matrix pencils

P(μ) := (A(μ), B(μ)) := (dzF (0, 0, μ), dzF (0, 0, μ)),
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414 R. BEARDMORE AND K. WEBSTER

where F has (z, z, μ) as its argument, is such that P(μ0) has a finite eigenvalue of
unit modulus in the complex plane, does an invariant set of (1.2) bifurcate from the
fixed point z = 0 at μ = μ0?

Due to the lack of forward uniqueness we modify what we mean by the term
invariant, which we do by using the prefixed quasi-invariant, and say that a set
Q ⊂ F−1{0} is quasi-invariant for (1.1) if, for (z, z) ∈ Q, there is a subsequent iterate
(z, z) ∈ Q for some z ∈ R

m.
The paper is organized in the following way: The remainder of section 1 briefly

covers the linear prerequisites for (1.1). Section 2 then provides some motivating
applications. Section 3 presents the basic definitions of how (1.1) defines a local
dynamical system and gives the invariant manifold equation of fixed points of (1.1).
Section 4 provides a reformulation of the invariant manifold equation from section 3 as
a nonlinear fixed-point problem in suitable Banach spaces which then is shown to have
a solution in section 4.3. Section 5 gives a normal form for (1.1) with and without the
presence of a bifurcation parameter. This section concludes with theorems that can
be deduced using these normal forms, giving bifurcation results for (1.1) when that
parameter is included. Finally, section 6 finishes the paper with a series of examples.

1.1. The linear case: Kronecker normal form. As a precursor to the anal-
ysis of the nonlinear problem (1.1), consider the linear case

Bzn + Azn+1 = 0,(1.3)

where A,B : R
m → R

m are linear maps and A is singular. In order to discuss the
behavior of (1.3) we first introduce a normal form for matrix pencils.

When A is singular, the matrix pencil (A,B) is said to be regular if there is an
ω ∈ C such that det(ωA+B) �= 0. The following result is well known for regular matrix
pencils (see [7, 3]): There are complementary subspaces K1 � R

p,K2 � R
q ⊂ R

m

such that p+ q = m and nonsingular linear mappings P,Q on R
m, L : K1 → K1, and

N : K2 → K2 such that

PAQ =

(
Ip 0
0 N

)
, PBQ =

(
L 0
0 Iq

)
;(1.4)

Ip and Iq are identities on K1 and K2, respectively. Moreover, there is a ν ≥ 1 such
that Nν = 0, and ν is said to be the Kronecker index of (A,B).

The Kronecker normal form (KNF) in (1.4) can be used to rewrite (1.3) as a
coupled system of difference equations

Lun + un+1 = 0, vn + Nvn+1 = 0,(1.5)

which has the solution un = (−L)nu0 and vn ≡ 0 for all n, and thus (1.3) has a
quasi-invariant subspace that arises from the quasi-invariant space {(u, v) : v = 0}
associated with (1.5). It is the presence of the former that we shall exploit in the
remainder of the paper to study nonlinear perturbations of (1.5) that arise from a
consideration of problems of the form (1.1).

1.2. Notation. If we define the spectrum of a matrix pencil to be

σ(A,B) = {λ ∈ C : det(λA + B) = 0},

then σ(A,B) = −σ(L) (note the minus sign), and p as defined within the KNF
above coincides with the number of finite eigenvalues of (A,B), where eigenvalues are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVARIANT MANIFOLDS OF NONLINEAR IMPLICIT SYSTEMS 415

counted according to their algebraic multiplicity. The matrix pencil (A,B) is said
to be hyperbolic if σ(A,B) is nonempty and contains no elements of unit modulus;
otherwise, it is said to be elliptic. We shall also write ρ(A,B) = sup{|λ| : λ ∈ σ(A,B)}
and denote the spectral radius of any linear mapping L by ρ(L). Throughout we shall
use # to denote the cardinality of a set of eigenvalues, counted according to algebraic
multiplicity.

We shall use BL(X,Y ) to denote the space of continuous linear maps from one
normed linear space X to another Y , even when X and Y are finite-dimensional. We
shall use Bε(x) for the open ball of radius ε about x, and Bε(x;X) will specify that
this ball is contained in the space X. If L ∈ BL(X,Y ), we shall denote the usual
operator norm by ‖L‖BL(X,Y ), which is given by sup{‖Lx‖Y : x ∈ X, ‖x‖X = 1}. If
the context is clear, we shall simply write ‖L‖, and BL(X) is also used for BL(X,X).
Throughout, if F : X → Y is a nonlinear mapping, then dF (x) ∈ BL(X,Y ) shall
denote the Fréchet derivative, and when acting on h ∈ X it will be written with
square brackets, as in dF (x)[h]. Similarly, d2F (x)[h, k] denotes the second derivative,
and this is bilinear in [h, k].

If n is a positive integer, we shall use On(x) on occasion to denote any mapping,
H, say, with the property that limx→0 ‖H(x)‖/‖x‖n exists.

2. Motivation. There are several problems from control theory and numerical
analysis that lead to discrete systems where the relationship between the current and
future states of a system are not explicit; see [12, 10, 6, 14] for examples.

2.1. Discretized differential-algebraic equations. In [11] the authors apply
a Runge–Kutta method to solve a differential-algebraic boundary-value problem aris-
ing from an optimal control problem, yielding a nonlinear difference-algebraic equation
where the control plays the role of an implicit variable. For example, using a forward-
Euler method to discretize the differential-algebraic equation (DAE)

ẋ = f(x, y), 0 = g(x, y) ((x(0), y(0)) given)

yields the ΔAE

xn+1 = xn + hf(xn, yn), 0 = g(xn, yn) ((x0, y0) given),

where h is a small parameter. A singularity in this context occurs when the partial
derivative dyg(x, y) is singular on some subset of g−1{0}.

Over the past decade a great deal of attention has been devoted to singular DAEs

F (z, ż) = 0,(2.1)

where dżF (z, ż) changes rank on some set, and our study of (1.1) can be viewed as
an extension of the work undertaken on (2.1) to the discrete-time case.

It is well known that (2.1) supports a range of singular and regular behavior,
including impasse points and pseudoequilibria [16, 19, 17, 20]. However, not a great
deal of the current literature is devoted to the study of bifurcations of DAEs nor to the
unfolding of singularities in DAEs, such as the image and kernel singularities defined
in [23]. One reason for this is the difficulty of proving a suitable center manifold
theorem that can cope with the kind of singularities peculiar to DAE. We do note,
however, that a Hopf bifurcation theorem is presented in [9] for systems of the form
ẋ = f(x, ẋ, α), where α is a bifurcation parameter, x ∈ R

m, and f is nonexpansive with
respect to ẋ, a case that does include certain DAE singularities; a Hopf bifurcation
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416 R. BEARDMORE AND K. WEBSTER

theorem for regular DAEs can be found in [15]. We also note that there are results
in the DAE literature that yield the existence of an invariant manifold containing an
equilibrium point; for regular DAEs see [18], and for singular DAEs see [24, 2].

2.2. Output-nulling control. Take a discrete dynamical system of the form

xn+1 = f(xn, un), yn = g(xn, un),(2.2)

where (xn) is a sequence of states, (un) are controls, and (yn) is a sequence of outputs.
One may ask whether there is an admissible control that nullifies or fixes the outputs:
Given (yn), does there exist a sequence pair ((xn), (un)) satisfying (2.2)? The re-
sulting equation is an infinite-dimensional system of equations that has a structure
reminiscent of the semiexplicit, index-1 DAE (for terminology, see [3]).

2.3. Optimal control. The preprint [14] is relevant to the present work as it
presents an invariant manifold result which leads to the existence of a control for the
following variational problem with an infinite horizon:

min
(uk)

{ ∞∑
k=0

	(xk, uk) : xk+1 = f(xk, uk), x0 ∈ R
m, uk ∈ Bε(0; Rp)

}

such that f(0, 0) = 0 and 	(0, 0) = 0. An optimal orbit satisfies the first-order
optimality conditions given by the quasi-linear, implicit difference equation

xk+1 = f(xk, uk),(2.3)

∂H

∂x
(xk, uk, λk+1) = λk,(2.4)

0 =
∂H

∂u
(xk, uk, λk+1),(2.5)

where H is the Hamiltonian H(x, u, λ) = λT f(x, u) + 	(x, u). In [14] the author
demonstrates the existence of a stable manifold associated with (2.3)–(2.5) which has
a dimension that coincides with the number of eigenvalues of the linearization about
its fixed point, and the existence of this stable manifold then provides the necessary
optimal control. The obstacle treated in [14] is the existence of a zero closed-loop
eigenvalue which is analogous to the type of singularity treated in this paper. One
can see the resemblance of (2.3)–(2.5) to (1.5) in that state variables (xk) propagate
forwards in time in (2.3)–(2.5), whereas adjoint variables (λk) propagate backwards,
a property shared by (1.5).

3. A functional equation for quasi-invariant manifolds. Let us now define
in what sense we expect (1.1) to induce a dynamical system. An element z ∈ R

m is
said to be a fixed point of (1.1) if F (z, z) = 0. If z denotes the first argument of F
and z the second, as in F (z, z), then we define the following conditions:

(A1) z = 0 is a fixed point of (1.1): F (0, 0) = 0,
(A2) det(dzF (0, 0)) = 0, and
(A3) there is a ξ ∈ C such that det(dzF (0, 0) + ξdzF (0, 0)) �= 0.

Throughout we make use of the matrix pencil (A,B), where

A := dzF (0, 0) and B := dzF (0, 0),(3.1)

and (A3) is the condition that (A,B) is regular. We shall assume that F ∈ Ck(R2m,
R

m) for k > 3 and seek local and global orbits of the ΔAE (1.1) in the following sense.
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Definition 1. A sequence (zn)Jj=0 is said to be a J-orbit of (1.1) for J ∈ N if

F (zj , zj+1) = 0 for 0 ≤ j ≤ J − 1 and 2 ≤ J < ∞,

and a local orbit is a J-orbit for some J ≥ 2. If there is a z2 ∈ R
m such that

(z0, z1; z2) is a local 2-orbit, then we say that the initial condition (z0, z1) supports
this orbit. A sequence (zn)∞j=0 is said to be a global orbit of (1.1) as it is a J-orbit
for each J ≥ 2.

Following the terminology used for DAEs, a pair (z0, z1) such that F (z0, z1) = 0
is said to be consistent, and if this pair supports some orbit, then it is said to be a
consistent initial condition. We could also have analogously defined backward orbits
for J ≤ −2, but we omit this for brevity. Note that initial conditions lie in R

2m and
not R

m, a property that is analogous to DAEs whereby initial positions and certain
initial derivatives must be provided in order to obtain the existence of solutions.

We now give the definition which stipulates how we expect (1.1) to induce a
dynamical system.

Definition 2. (1.1) induces a local dynamical system on a manifold M ⊂
F−1{0} ⊂ R

2m which contains the origin of R
2m if there is a ball Mr := M ∩

Br(0; R2m) such that for each (z, z) ∈ Mr there is a unique (z, z) ∈ M. If these
conditions hold, M is said to be a solution manifold of (1.1).

This definition ensures that every point (z, z) ∈ Mr supports the nontrivial 3-
orbit (z, z; z) and that the point z ∈ R

m is uniquely determined if we are to impose
the requirement that (z, z) ∈ M.

Definition 3. A set Q ⊂ F−1{0} ⊂ R
2m is said to be quasi-invariant if, for

each (z, z) ∈ Q, there exists a z ∈ R
m such that (z, z) ∈ Q.

As an aside, note that (1.1) induces a trivial dynamical system on the quasi-
invariant set {(0, 0)} by virtue of (A1), even if assumption (A3) fails. Note also that
a solution manifold M is not necessarily unique; it is the local orbit within M that
must be uniquely determined. Indeed, there may well be many possible choices for z
in order to keep the orbit on F−1{0}, many of which may not be elements of M.

3.1. The functional equation. Our strategy for locating quasi-invariant man-
ifolds of (1.1) is to study a functional equation obtained in an analogous manner to
the center-manifold equation from the theory of invariant manifolds for maps. The
solution of this equation then provides the manifold M needed to form a local dy-
namical system for (1.1). We shall show in Theorem 1 that one can find a linear
space K1 ⊂ R

2m with an associated locally defined, differentiable map ϕ : K1 → K1,
a manifold M ⊂ F−1{0}, and a local diffeomorphism θ : K1 → M such that

F (θ(u)) = 0 =⇒ F (θ(ϕ(u))) = 0.

As a result, we will be able to ensure that (1.1) induces a local dynamical system
on M essentially by iterating the map ϕ. This simply means that if (z, z) = θ(u) is

a consistent initial condition, then (z, z) = θ(ϕ(u)) and (z, z) = θ(ϕ(ϕ(u))) provide
subsequent iterates of (1.1).

Returning to (1.1), let us change the form of the problem by setting wn = zn+1,
so that along an orbit of (1.1) we have

zn+1 = wn,(3.2)

0 = Bzn + Awn + Φ(wn, zn),(3.3)
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where Φ is the Ck function which satisfies Φ(0, 0) = 0, dΦ(0, 0) = 0 and which is
defined by

F (z, w) −Bz −Aw := Φ(w, z).

The problem of finding an initial condition which is consistent, (z0, w0), say, is of
an algebraic nature, whereas the problem of finding an orbit which is supported by
this initial condition is a dynamic problem. This means that the problem of finding
a manifold of orbits of a ΔAE will lead not to an algebraic equation that one could
tackle using an elementary version of the implicit function theorem but instead to a
functional equation.

Let us now obtain this functional equation. By applying the condition that (A,B)
is a regular matrix pencil (condition (A3)), it follows that

(A,B) :=

((
I 0
0 0

)
,

(
0 I
B A

))
(3.4)

is also a regular matrix pencil. If we define the vector Wn = (zn, wn) ∈ R
2m, using

(3.2)–(3.3), (1.1) can be written in the semilinear form

AWn+1 = BWn + Ψ(Wn),

where Ψ is the Ck-mapping Ψ(W ) := (0,Φ(W )), so that Ψ(0) = 0 and dΨ(0) = 0.
There are mappings P and Q that put (A,B) in Kronecker normal form, and, by
setting Wn = QXn, we may write (3.2)–(3.3) in the form

[PAQ]Xn+1 = [PBQ]Xn + PΨ(QXn),(3.5)

where the terms in square brackets are in normal form:[
I 0
0 N

]
Xn+1 =

[
C 0
0 I

]
Xn + PΨ(QXn).

Consequently, there are linear spaces K1 � Rp and K2 � R
q such that K1⊕K2 �

R
2m and Xn = (un, vn) ∈ K1 ⊕K2, where (un, vn) satisfies the difference equation in

normal form

(NF)

{
un+1 = Cun + f(un, vn),
Nvn+1 = vn − g(un, vn).

We now ask that there is a manifold given by the graph of some function h on which
one can solve (NF) uniquely in a neighborhood of the fixed point (u, v) = (0, 0) in the
sense that vn = h(un) holds along orbits. This imposes the two conditions

un+1 = Cun + f(un, h(un)) and Nh(un+1) = h(un) − g(un, h(un))

on h, and it follows that the local orbit (un, vn) of (NF) can be found if h satisfies
the functional equation

h(u) = Nh(Cu + f(u, h(u))) + g(u, h(u)), h(0) = 0, dh(0) = 0,(3.6)

for all u in some neighborhood of the origin in R
p. The boundary conditions in (3.6)

ask first that the fixed point (u, v) = (0, 0) of (NF) lies on the graph of h and then
that this graph is tangent to the quasi-invariant subspace obtained on setting f = 0
and g = 0 in (NF).
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3.2. Further preliminaries.

3.2.1. Perturbation of eigenvalues. For completeness we have included the
following two preliminary results regarding the spectra of one-parameter families of
matrix pencils, which are mappings of the form

P : (−1, 1) → BL(Rm) ×BL(Rm);μ �→ (A(μ), B(μ)).

If we define the family of analytic functions

fμ(ω) = det(ωA(μ) + B(μ)),

the multiplicity of an eigenvalue of a matrix pencil is then the multiplicity of the
corresponding zero of fμ(·), which is at most m. The identity

d

dω
fμ(ω) = fμ(ω)tr[(ωA(μ) + B(μ))−1A(μ)],(3.7)

whenever this inverse is defined, can be used to obtain the following two lemmas.
Lemma 1 (C1-dependence of eigenvalues). Suppose that P(μ) := (A(μ), B(μ))

is a C1-parameterized family of real matrix pencils, with μ ∈ (−1, 1), such that P(0)
is a regular matrix pencil. An element λ0 ∈ σ(P(0)) is said to be an algebraically
simple eigenvalue of P(0) if

ker(λ0A(0) + B(0)) = 〈x0〉 and x0 �∈ ran(λ0A(0) + B(0)).

If λ0 is an algebraically simple eigenvalue of P(0), then there is a C1-parameter
family of algebraically simple eigenvalues λ(μ) ∈ C of P(μ) such that λ(0) = λ0, with
a corresponding C1 family of unit eigenvectors x(μ), with x(0) = x0.

Proof. This follows from the implicit function theorem applied to the system
F (λ, x, μ) = (0, 0), where F (λ, x, μ) :=

[
(λA(μ) + B(μ))x, ‖x‖2

2 − 1
]
.

Lemma 2 (C0-dependence of eigenvalues). Suppose that P(μ) := (A(μ), B(μ)) is
a C0-parameterized family of real matrix pencils, with μ ∈ (−1, 1), such that P(0) is
regular. If λ0 is an eigenvalue of P(0) of algebraic multiplicity l, then it is isolated in
the complex plane, and for each ε > 0 there is a δ > 0 such that if |μ| < δ, then P(μ)
has l eigenvalues (counted according to algebraic multiplicity) in the disk D(λ0, ε).

Proof. As f0(·) does not vanish identically because P(0) is regular by assumption,
neither can fμ(·) for sufficiently small μ. The isolatedness of eigenvalues of P(μ) is
a consequence of the fact that analytic functions have isolated zeros. Now by using
(3.7) we integrate around a closed circle in the complex plane with center ω = λ0 and
radius ε, from where

#{σ(P(μ)) ∩D(λ0, ε)} =
1

2πi

∮
∂D(λ0,ε)

tr[(ωA(μ) + B(μ))−1A(μ)]dω,

where D(λ0, ε) is an open disk of radius ε about λ0 in the complex plane. This
quantity is integer-valued and depends continuously on μ, and the result now
follows.

3.2.2. Notation. From this point we shall identify the linear space K1 from the
KNF with R

p and K2 with R
q; now let | · |p and | · |q denote norms on R

p and R
q,

and let Ωδ = {u ∈ R
p : |u|p < δ}. We also assume that the unit sphere ∂Ω1 is a C∞

manifold.
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Let C0(Ωδ,R
q) be the Banach space of continuous maps on Ωδ with norm ‖h‖C0 =

supu∈Ωδ
|h(u)|q. Similarly, let Cj(Ωδ,R

q) be the space of all j-times continuously dif-

ferentiable functions on Ωδ with norm ‖h‖Cj = max0≤i≤j supu∈Ωδ
‖dih(u)‖C0 , where

di denotes the ith (Fréchet) derivative, so that djh(u) is a j-linear form which we
denote [k1, . . . , kj ] → djh(u)[k1, . . . , kj ]. Consequently, we have the norm of a higher
derivative given by the formula

‖djh‖C0 = sup
u∈Ωδ

sup
|ki|p≤1

|djh(u)[k1, . . . , kj ]|q.(3.8)

If M is any multilinear form on a linear space Z and z ∈ Z, then M [z](k) is shorthand
for M [z, z, . . . , z].

From the smoothness of the unit sphere ∂Ω1, it follows that the embedding of
Cj+1(Ωδ) into Cj(Ωδ) is compact, so that if (hn) ⊂ Cj+1(Ωδ) is bounded in the norm
of the latter space, there is a subsequence (hnk

) which converges in Cj(Ωδ) to some
element of Cj(Ωδ). We shall also make limited use of the Hölder spaces, which we
denote by Cj+α(Ωδ) whenever j is an integer and 0 < α < 1, recalling the compact
embedding Cj+α(Ωδ) ⊂ Cj+β(Ωδ) if α > β.

It can be somewhat notationally cumbersome to include all of the references to
the underlying spaces in all of the norms that we use, so we shall limit their use and
expect that the precise meaning can be taken from context.

4. Solving the fixed-point problem (3.6). It is not (NF) that we shall seek
to solve directly, but we make the substitution

u = εũ, v = εṽ

in (NF) to give (after removal of the tildes for clarity)

(NF)ε

{
un+1 = Cun + ε−1f(εun, εvn),
Nvn+1 = vn − ε−1g(εun, εvn).

As the functions f and g are higher than linear order at the origin, (NF)ε is in fact
smooth with respect to variations in ε.

Let us define the one-parameter family of Ck functions fε and gε (with Ck−1

dependence on ε) by

fε(u, v) = ε−1f(εu, εv) and gε(u, v) = ε−1g(εu, εv),

respectively. For j ∈ N we also have

djfε(u, v) = εj−1djf(εu, εv) and djgε(u, v) = εj−1djg(εu, εv),(4.1)

whenever these derivatives are defined.
Now seek an invariant manifold M of (NF)ε given by a graph on which

vn = h(un),

and then M can be realized as such a graph if there is a solution of the nonlinear
functional equation{

h(u) = Nh(Cu + fε(u, h(u))) + gε(u, h(u)),
h(0) = 0, dh(0) = 0.

(4.2)
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4.1. Preliminary estimates. The following are simple but essential estimates
on the derivatives of f and g. By the mean-value inequality and the fact that the
mapping (u, v) �→ (f(u, v), g(u, v)) and its derivative vanish at (u, v) = (0, 0), there
exists an 	 (= 	(δ, r)) > 0 such that

|f(u, v)|p ≤ 	‖(u, v)‖2, |g(u, v)|q ≤ 	‖(u, v)‖2,(4.3)

and

‖df(u, v)‖ ≤ 	‖(u, v)‖, ‖dg(u, v)‖ ≤ 	‖(u, v)‖,(4.4)

whenever |u|p ≤ δ, |v|q ≤ r, where here and throughout we use the norm

‖(u, v)‖ = max(|u|p, |v|q) (∀(u, v) ∈ R
p × R

q).

Here ‖df(u, v)‖ and ‖dg(u, v)‖ both refer to induced operator norms, treating df(u,
v) and dg(u, v) as linear mappings. By using the mean-value inequality we obtain

‖d2g(u, v) − d2g(0, 0)‖ ≤ sup
|u|p≤δ,|v|q≤r

‖d3g(u, v)‖‖(u, v)‖,

and the triangle inequality gives

‖d2g(u, v)‖ ≤ ‖d2g(0, 0)‖ + 	‖(u, v)‖ (|u|p ≤ δ, |v|q ≤ r),

where 	 (= 	(δ, r)) = sup|u|p≤δ,|v|q≤r ‖d3g(u, v)‖, whence

‖d2gε(u, v)‖ ≤ ε
(
‖d2g(0, 0)‖ + ε	‖(u, v)‖

)
(|u|p ≤ δ, |v|q ≤ r).(4.5)

An analogous inequality holds for f and fε:

‖d2fε(u, v)‖ ≤ ε
(
‖d2f(0, 0)‖ + ε	‖(u, v)‖

)
(|u|p ≤ δ, |v|q ≤ r).(4.6)

It is the O(ε) size of these quantities that will be important later.

4.2. Introducing a cutoff function. It is not (4.2) that we shall seek to solve
directly, but we must employ a cutoff function to rewrite (4.2) in a fixed-point form
that is amenable to a Picard iteration. This is not the case at present because if we
were to define a nonlinear operator acting on h by the right-hand side of (4.2), there
is no reason for it or its iterates to be well-defined on a suitable function space.

For any δ > 0, there is a cutoff function ψ ∈ C∞(Rp) such that

ψ(u) =

{
u if |u|p ≤ δ/2,
0 if |u|p ≥ 3δ/2

and such that |ψ(u)|p ≤ δ. By using this cutoff we define a Nemitskii operator π as
follows:

π(h)(u) = ψ(Cu + fε(u, h(u))) (∀u ∈ Ωδ, h : Ωδ ⊂ R
p → R

q),(4.7)

so that

π : C0(Ωδ,R
q) → C0(Ωδ,R

p),
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and the inequality |π(h)(u)|p ≤ δ holds pointwise. Moreover, by the Ck-regularity of
f , it follows that π is itself a Ck-mapping for each ε > 0 fixed, with Fréchet derivative

dπ(h)[k](·) = dψ(C · +fε(·, h))[dvfε(·, h)[k]] (∀h, k ∈ C0(Ωδ,R
q)).(4.8)

Also note the following estimate, which will be important later.
Lemma 3. Suppose that h ∈ C0(Ωδ,R

q) satisfies ‖h‖C0 ≤ r, then

‖dπ(h)‖BL(C0) ≤ ε · ‖ψ‖C1	max(δ, r),(4.9)

and there are constants κ1, κ2 > 0, depending on 	, δ, and r, but not on ε, such that

‖d2π(h)‖BL(C0)×BL(C0) ≤ ε‖ψ‖C2 (κ1(	, δ, r) + εκ2(	, δ, r)) .(4.10)

Proof. By using (4.8) we obtain

sup
k∈C0,‖k‖C0=1

‖dπ(h)[k]‖C0 = sup
k∈C0,‖k‖C0=1

‖dψ(C · +fε(·, h))[dvfε(·, h)[k]]‖C0

≤ ‖ψ‖C1 · sup
k∈C0,‖k‖C0=1

‖dvfε(·, h)[k]‖C0

≤ ‖ψ‖C1 · sup
|u|p≤δ,|v|q≤r

‖dvfε(u, v)‖

≤ ‖ψ‖C1 · 	 · sup
|u|p≤δ,|v|q≤r

‖(εu, εv)‖ (by (4.1) and (4.3)),

and the first part follows. The second part follows from

d2π(h)[k1, k2] = d2ψ(C · +fε(·, h))[dvfε[k1], dvfε[k2]] + dψ[d2
vvfε(·, h)[k1, k2]],

so that, for i = 1, 2,

sup
ki∈C0,‖ki‖C0=1

‖d2π(h)[k1, k2]‖C0 ≤ sup
u∈Rp

‖dψ(u)‖ · ‖d2
vvfε(·, h)‖

+ sup
u∈Rp

‖d2ψ(u)‖ · ‖dvfε(·, h)‖2

≤ ‖ψ‖C2

(
sup

|u|p≤δ,|v|q≤r

‖d2
vvfε(u, v)‖ + sup

|u|p≤δ,|v|q≤r

‖dvfε(u, v)‖2

)

≤ ‖ψ‖C2

(
ε‖d2f(0, 0)‖ + ε2	max(δ, r) + sup

|u|p≤δ,|v|q≤r

‖dvf(εu, εv)‖2

)
(by (4.5))

≤ ‖ψ‖C2

(
ε‖d2f(0, 0)‖ + ε2	max(δ, r) + sup

|u|p≤δ,|v|q≤r

‖(εu, εv)‖2	2

)
(by (4.3)),

and the result follows directly from here.
In order to solve (4.2), we now tackle the following nonlinear fixed-point problem:

h = Nh(π(h)) + Gε(h),(4.11)

where Gε : C0(Ωδ,R
q) → C0(Ωδ,R

q) is the Nemitskii operator

Gε(h)(u) := gε(u, h(u)).

Notice that the cutoff ψ has been used in (4.11), but, because ψ coincides with the
identity on some balls around the origin, solutions of (4.11) will satisfy (4.2) on this
ball.
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This construction ensures that h(π(h)) ∈ C0(Ωδ,R
q) whenever h ∈ C0(Ωδ,R

q),
and we may, as a result, define the operator

T : C0(Ωδ,R
q) → C0(Ωδ,R

q); h �→ h(π(h)),

noting that the operators T : C1(Ωδ,R
q) → C1(Ωδ,R

q) and T : C2(Ωδ,R
q) →

C2(Ωδ,R
q) are also well-defined as the restrictions of T to various subspaces of

C0(Ωδ,R
q) as f and g are C3 functions.

However, it is not (4.11) that we shall solve, but we exploit the nilpotency of
N to bring the functional part of (4.2) and (4.11), that is, Nh(π(h)), into a higher-
order contribution to the problem. However, because g(u, v) is a second-, or possibly
higher-order function, the operator Gε contains no linear terms, and this will help us
to obtain a contractive sequence by iterating T .

By way of example, let us suppose that N �= 0 but N2 = 0. If there exists
a solution of h = Nh(π(h)) + Gε(h), there results Nh = NGε(h), and therefore
Nh(π(h)) = NGε(h(π(h))). In this case we find that h must satisfy

h = NGε(h(π(h))) + Gε(h),(4.12)

and one observes that the functional part of the equation (that is, h(π(h))) now sits
inside a higher-order term (and not a linear one as in (4.11)). Conversely, if h satisfies
(4.12), then Nh = NGε(h), so that NGε(h(π(h))) = Nh(π(h)) because N2 = 0, and
h = Nh(π(h)) + Gε(h) follows.

When the nilpotency index of the map N is arbitrary we extend this idea in the
following lemma, where here and in the remainder we shall write

Gε(h) =

ν−1∑
j=0

N jGε(T
j(h)),

and

T j+1 = T (T j), where T 0 = I,

and the latter denotes the identity on C0(Ωδ,R
q).

Lemma 4. Suppose that Nν = 0 but Nν−1 �= 0; then h is a solution of (4.11) if
it is a solution of the fixed-point problem

h = Gε(h).(4.13)

Proof. Let us suppose that h is a solution of (4.13); then

Nh = NGε(h) = N

⎡
⎣ν−1∑

j=0

N jGε(T
j(h))

⎤
⎦ =

ν−1∑
j=0

N j+1Gε(T
j(h)),

and so, because Nν = 0, we obtain

Nh(π(h)) =

ν−1∑
j=0

N j+1Gε(T
j(h(π(h))))

=

ν−1∑
j=0

N j+1Gε(T
j+1(h)) =

ν−1∑
j=1

N jGε(T
j(h)) = Gε(h) − Gε(h) = h− Gε(h),

which therefore provides a solution of (4.11) as required.
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4.3. The main result. Our strategy for solving (4.13), and hence (4.2), is to
show that Gε satisfies a refined Banach contraction theorem of the type given in [26,
p. 286]. The idea that we employ several times is encapsulated in the following idea.
Consider Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) such that x0 ∈ Y and Y ⊂ X, and
moreover T is a mapping satisfying T : Y → Y and T : X → X. Now, if there is an
r > 0 and a κ ∈ [0, 1) such that

1. T : Br(x0;X) → Br(x0;X),
2. ‖T (y) − T (y′)‖X ≤ κ‖y − y′‖X for all y, y′ ∈ Y ∩Br(x0;X),

then T has a fixed point y∗ ∈ Br(x0;X). In addition, if
3. T : Bρ(x0;Y ) → Bρ(x0;Y ) and
4. there is an interpolating Banach space Z such that Y ⊂ Z with compact

embedding and Z ⊂ X with continuous embedding,
then y∗ ∈ Z.

The point here is that we cannot ensure that y∗ ∈ Y , although one still obtains
a fixed point in some space from the standard iteration scheme. By using this idea
one can prove an existence and regularity result for (4.2), where we have in mind
x0 = 0, T = Gε, Y = Ck+1, Z = Ck+α, and X = Ck, where α ∈ (0, 1). We begin by
providing the details to cover the cases k = 0 and k = 1.

The following theorem is the main result of this paper from which the invariant
manifold and bifurcation theorems are deduced.

Theorem 1. Let α ∈ [0, 1). There exists an ε0 > 0 such that, for each ε ∈ (0, ε0),
(4.13) has a solution h ∈ C1+α(Ωδ,R

q); moreover h(0) = 0 and dh(0) = 0.
Proof. Let Xr be the C0-closed ball of radius r about zero in C0(Ωδ,R

q) and Yr

the C1-closed ball of radius r about zero in C1(Ωδ,R
q). Let h0 ∈ Yr, and define a

sequence

hn+1 := Gε(hn).

We shall show that we can choose ε such that (hn) is well-defined, contractive, and
hence Cauchy in Xr, and it therefore converges. Throughout the remainder of the
proof we shall use the positive constant

n∗ :=

ν−1∑
j=0

‖N‖jBL(Rq).

We now give a proof of Theorem 1 in four short steps, each placing a stronger re-
striction on ε relative to the fixed choice of δ and r to ensure that Gε contracts when
acting on C1 functions, measured in the C0 norm.

Step 1. If ε < r(	n∗ max(δ, r)2)−1 =: ε1, then Gε : Xr → Xr.
Proof. Suppose that h ∈ Xr, and then T (h) = h(π(h)) is continuous as h is.

Moreover if ‖h‖C0 ≤ r, then ‖T (h)‖C0 = ‖h(π(h))‖C0 ≤ r; similarly ‖T j(h)‖C0 ≤ r
for all 0 ≤ j ≤ ν − 1. By definition,

‖Gε(h)‖C0 ≤
ν−1∑
j=0

‖N‖j‖Gε(T
j(h))‖C0 ≤

ν−1∑
j=0

‖N‖j sup
‖h‖C0≤r

‖Gε(h)‖C0

≤ n∗ sup
|u|p≤δ,|v|q≤r

|gε(u, v)|q = n∗ sup
|u|p≤δ,|v|q≤r

ε−1|g(εu, εv)|q.

From (4.3) it follows that

‖Gε(h)‖C0 ≤ ε 	n∗ sup
|u|p≤δ,|v|q≤r

‖(u, v)‖2 = ε 	n∗ max(δ, r)2.

By assumption, ε	n∗ max(δ, r)2 < r, and Step 1 is complete.
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Step 2. If ε < min{ε1, [r	max(δ, r)‖ψ‖C1 ]−1, r[n∗(1+r)	max(δ, r)]−1} =: ε2, then
Gε : Yr → Yr.

Proof. Suppose that h ∈ Yr so that h ∈ Xr, then T j(h) is differentiable on Ωδ

as h is; moreover throughout the remainder of the proof of Step 2 we shall write
H := Gε(h) for brevity. It then follows that

dH(u) =
ν−1∑
j=0

N j
[
dugε(u, T

j(h)(u)) + dvgε(u, T
j(h)(u))[du(T j(h))(u)]

]
,(4.14)

and we now need to estimate ‖dH(u)‖C0 . By using the fact that ‖h‖C0 ≤ r, since
T : Xr → Xr from Step 1, we obtain |T j(h)(u)|q = |h(π(h(. . .)) . . .)|q ≤ r, and
therefore

sup
|u|p≤δ

‖dH(u)‖BL(Rp,Rq) ≤
ν−1∑
j=0

‖N‖j
(
‖dugε(u, T

j(h)(u))‖

+‖dvgε(u, T j(h)(u))‖‖du(T j(h))(u)‖
)

≤ n∗ sup
0≤j≤ν−1

(
‖dugε(u, T

j(h)(u))‖ + ‖dvgε(u, T j(h)(u))‖‖du(T j(h))(u)‖
)

≤ n∗ sup
0≤j≤ν−1

|u|p≤δ,|v|q≤r

(
‖dugε(u, v)‖ + ‖dvgε(u, v)‖‖du(T j(h))(u)‖

)

≤ ε n∗	max(r, δ)

(
1 + sup

0≤j≤ν−1,|u|p≤δ

‖du(T j(h))(u)‖
)
.

Now we estimate the final bracketed term in the latter expression. The linear mapping
obtained from differentiating T j(h)(u) with respect to u is

du(T j(h))(u) = du(h(π(h(. . . π(h) . . .)))),

which can be written as the recurrence

du(T j(h))(u) = dh(π(T j−1(h))(u))dπ(T j−1(h)(u)) · du(T j−1(h)(u)),(4.15)

where, by definition, du(T 0(h))(u) = du(h)(u) = dh(u). By taking C0 norms and
setting

ξj := ‖du(T j(h))(u)‖BL(Rp,Rq),

we obtain the relation

ξj ≤ ‖dh‖C0 sup
‖h‖C0≤r

‖dπ(h)‖BL(C0) · ξj−1,

where ξ0 = ‖dh‖C0 ≤ ‖h‖C1 ≤ r. From (4.9) of Lemma 3, we find that

ξj ≤ ε	rmax(δ, r)‖ψ‖C1 · ξj−1 ≤ (ε	rmax(δ, r)‖ψ‖C1)
j
ξ0 ≤ r

because ε	rmax(δ, r)‖ψ‖C1 < 1 by assumption. As a result, the inequality

sup
|u|p≤δ

‖dH(u)‖BL(Rp,Rq) ≤ ε n∗	max(r, δ)

(
1 + sup

0≤j≤ν−1
ξj

)
≤ εn∗	max(r, δ)(1 + r) ≤ r

also now follows from the assumption of the claim, and we have proven that h ∈ Yr,
as required.
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Step 3. If ε < ε2 and we define the O(ε) quantity κ(ε) by

κ(ε) := ε · 	max(δ, r)

ν−1∑
i=0

(rε · ‖ψ‖C1	max(δ, r))i,

then ‖hn+1 − hn‖C0 ≤ κ(ε)‖hn − hn−1‖C0 . As a result, (hn) is Cauchy in Xr if ε is
further restricted so that κ(ε) < 1, and so (hn) converges in Xr.

Proof. For brevity, let us write h in place of hn+1 and k for hn after setting
h0 = 0 ∈ Yr and hn+1 = Gε(hn). Now

‖Gε(h) − Gε(k)‖C0 ≤
ν−1∑
j=0

‖N‖j‖Gε(T
j(h)) − Gε(T

j(k))‖C0

≤ n∗ sup
0≤j≤ν−1

‖gε(u, T j(h)(u)) − gε(u, T
j(k)(u))‖C0 .

The mean-value inequality yields

|gε(u, T j(h)(u)) − gε(u, T
j(k)(u))|q

≤ sup
z∈[T j(h)(u),T j(k)(u)]

‖dvgε(u, z)‖‖T j(h) − T j(k)‖C0

≤ sup
|u|p≤δ,|v|q≤r

‖dvgε(u, v)‖‖T j(h) − T j(k)‖C0 (using Step 1)

≤ ε	max(r, δ) · ‖T j(h) − T j(k)‖C0 (by (4.3)),(4.16)

where, for any z1, z2 ∈ R
p, the generalized interval from z1 to z2 is given by

[z1, z2] := {λz1 + (1 − λ)z2 : 0 ≤ λ ≤ 1}.

So let us define χj := ‖T j(h) − T j(k)‖C0 , and we estimate χj as follows:

|T j(h)(u) − T j(k)(u)|q = |h(π(T j−1(h))) − k(π(T j−1(k)))|q
≤ |h(π(T j−1(h))) − k(π(T j−1(h)))|q

+ |k(π(T j−1(h))) − k(π(T j−1(k)))|q
=⇒ χj ≤ ‖h− k‖C0 + ‖k(π(T j−1(h))) − k(π(T j−1(k)))‖C0 .

However, from Step 2 we have ‖k‖C1 ≤ r, and therefore

|k(u) − k(u′)|q ≤ r|u− u′|p ∀u, u′ ∈ Ωδ.

Using the fact that π is a Fréchet differentiable mapping on C0(Ωδ,R
q) with norm

bounded according to (4.9), an application of the mean-value inequality gives

χj ≤ ‖h− k‖C0 + r sup
‖h‖C1≤r

‖dπ(h)‖BL(C0) · χj−1,

so that χj ≤ ‖h − k‖C0 + ε · r‖ψ‖C1	max(δ, r)χj−1, where χ0 = ‖h − k‖C0 . The
discrete Gronwall inequality now gives

χj ≤ ‖h− k‖C0

ν−1∑
i=0

(rε‖ψ‖C1	max(δ, r))
i
,
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and with (4.16) we have the desired inequality

‖Gε(h) − Gε(k)‖C0 ≤ κ(ε) · ‖h− k‖C0 .

The standard contraction argument now shows that (hn) ⊂ Yr is Cauchy in Xr as

claimed, and there therefore exists an h ∈ Xr such that hn
C0

→ h as n → ∞.

Since (hn) ⊂ Yr, it follows that there is a subsequence (nj) such that hnj

Cα

→ h

as j → ∞ for some h ∈ Xr ∩ Cα(Ωδ), and we deduce that h = h ∈ Cα(Ωδ). By
restricting ε further we can actually ensure that h is differentiable, as follows.

Step 4. There is an ε3 > 0 such that h ∈ C1+α(Ωδ) whenever ε < min(ε2, ε3) and
κ(ε) < 1.

Proof. Let h ∈ C2(Ωδ) satisfy ‖h‖C2 ≤ r, and recall that H := Gε(h). From
(4.14) we obtain

d2H(u) =

ν−1∑
j=0

N j{d2
uugε(u, T

j(h)(u)) + 2d2
uvgε(u, T

j(h)(u))[I, du(T j(h)(u))]

+ d2
vvgε(u, T

j(h)(u))[du(T j(h)(u)), du(T j(h)(u))]

+ dvgε(u, T
j(h)(u))[d2

uu(T j(h)(u))]}.

In seeking a bound on ‖H‖C2 , we now examine the term d2
uu(T j(h)(u)) more closely

as bounds on the remaining elements of d2H can be obtained from Steps 1 and 2. By
applying the chain rule (4.15) we obtain the recurrence

d2
uu(T j(h)(u)) = du

{
dh(π(T j−1(h))(u))dπ(T j−1(h)(u)) · du(T j−1(h)(u))

}
= d2h(π(T j−1(h))(u))[dπ(T j−1(h)(u)) · du(T j−1(h)(u))](2)

+ dh(π(T j−1(h))(u))[d2π(T j−1(h)(u))[du(T j−1(h)(u))](2)]

+ dh(π(T j−1(h))(u))[dπ(T j−1(h)(u))[d2
uu(T j−1(h)(u))]],

and taking norms gives

‖d2
uu(T j(h)(u))‖C0 ≤ ‖d2h‖C0‖dπ(h)‖2‖du(T j(h)(u))‖C0

+ ‖dh‖C0‖d2π(h)‖‖du(T j(h)(u))‖2
C0

+ ‖dh‖C0‖dπ(h)‖‖d2
uu(T j(h)(u))‖C0 .

If we write

ηj := ‖d2
uu(T j(h)(u))‖C0 ,

and use the fact that ξj = ‖du(T j(h))(u)‖BL(Rp,Rq) ≤ r for all 0 ≤ j ≤ ν − 1, which
was established in Step 2, we obtain the difference inequality

ηj ≤ r3‖dπ(h)‖2
C0 + r2‖d2π(h)‖C0 + r‖dπ‖C0 · ηj−1

such that η0 ≤ r by definition. There results, for j ≥ 1,

ηj ≤ (r‖dπ(h)‖C0)
j
η0 +

(
r3‖dπ(h)‖2

C0 + r2‖d2π(h)‖C0

) j−1∑
i=0

(r‖dπ(h)‖C0)i,

and the bounds (4.9) and (4.10) show that η := max0≤j≤ν−1 ηj has an O(1) depen-
dence on ε in the sense that there is an M > 0 such that η ≤ M whenever 0 ≤ ε ≤ 1.
(In fact, one can choose M to be less than r if ε is sufficiently small.)
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We now obtain

‖d2H‖C0 ≤ n∗ sup
0≤j≤ν−1

{
‖d2

uugε(u, T
j(h)(u))‖C0 + 2ξj‖d2

uvgε(u, T
j(h)(u))‖C0

+ ξ2
j ‖d2

vvgε(u, T
j(h)(u))‖C0 + ηj‖dvgε(u, T j(h)(u))‖C0

}
≤ n∗ sup

‖h‖C0≤r,0≤j≤ν−1

{
‖d2

uugε(u, h)‖C0 + 2r‖d2
uvgε(u, h)‖C0

+ r2‖d2
vvgε(u, h)‖C0 + η‖dvgε(u, h)‖C0

}
,(4.17)

where η has been used to bound the last term in (4.17). By using (4.5) to estimate
the second derivative terms we find that

‖d2H‖C0 ≤ ε · n∗ sup
0≤j≤ν−1

{
‖d2g(0, 0)‖ + ε	max(r, δ)

+ 2r(‖d2g(0, 0)‖ + εr	max(r, δ))

+ r2(‖d2g(0, 0)‖ + ε	max(r, δ)) + η	max(r, δ)
}
.(4.18)

It is immediate from (4.18) and Steps 1 and 2 that a suitably small choice of ε
ensures that ‖H‖C2 ≤ r whenever ‖h‖C2 ≤ r. As a result, if we impose the following
restriction on the initial guess for a fixed point of Gε:

h0 ∈ Zr := {h ∈ C2(Ωδ,R
q) : ‖h‖C2 ≤ r},

then the C0-convergent sequence from Step 3 also satisfies (hn) ⊂ Zr. This means
that a C1+α-convergent subsequence can now be extracted from (hn), so that the
convergence of hn to h actually occurs in C1+α and h therefore lies in this smoother
space.

We have shown that there is a differentiable solution of (4.2) on a sufficiently
small ball around the origin, but there remains to prove the last part of Theorem 1
regarding the behavior of h at the origin. So let h be a C1 solution of (4.2) on some
ball Ωδ, and put ζ = h(0). It follows that ζ is a solution of the algebraic equation

−ζ + Nh(fε(0, ζ)) + gε(0, ζ) = 0,(4.19)

and (4.19) has solution ζ = 0. As the linearization of the left-hand side of (4.19) at
ζ = 0 is a multiple of the identity, the inverse function theorem ensures that ζ = 0
is the only solution of (4.19) in some neighborhood of zero, and this ensures that
h(0) = 0. Since any solution of (4.13) provides one of (4.2), we can differentiate (4.2)
with respect to u and set u = 0; this gives

dh(0) = Ndh(0)[C],

but then we can continue in an inductive manner to deduce that

Ndh(0)[C] = N2dh(0)[C2] = · · · = Nνdh(0)[Cν ] = 0,

as N is nilpotent. We find that dh(0) = 0, and this concludes the proof of Theo-
rem 1.

The question of maximal regularity of a solution of (4.2), or equivalently (4.13), is
not addressed, although the method of proof used in Theorem 1 can be continued by
restricting ε further as required to show that Gε maps the ball of radius r in Cj(Ωδ,R

p)
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into itself. This ensures that the sequence (hn) constructed in the proof of Theorem 1
converges to h in as strong a Cj norm as we like, provided that f and g are sufficiently
smooth. We cannot, however, be sure that the resulting solution h lies in C∞(Ωδ,R

p)
because the interval in which ε must reside so as to obtain a Cj fixed point of Gε could
shrink indefinitely as j grows.

Theorem 1 does not ensure the existence of a continuous fixed point of (4.2) which
is not Cα for some 0 < α < 1. If we take a continuous initial guess for a solution,
h0 ∈ C0(Ωδ,R

q), say, then, although there is a sequence of continuous functions
defined by hn+1 = Gε(hn), there is no reason to suspect that the sequence of iterates
(hn) will satisfy the property of being a C0-contractive sequence. On the other hand,
a suitably small C1 initial guess will lead to Cα convergence of the resulting iterates
for any α ∈ [0, 1).

4.4. Stability implies uniqueness. There are some simple cases where unique-
ness and smoothness can be easily established. The most obvious is where N = 0,
and then Theorem 1 can be proven using the elementary implicit function theorem.
Another occurs when the matrix denoted C that arises from the Kronecker normal
form of (A,B) in (3.5) satisfies ‖C‖ < 1 in the norm induced by | · |p. In this case the
cutoff function ψ used above is not needed in order to obtain a well-defined operator
π. If we define the Nemitskii operator

π(h)(u) = Cu + fε(u, h(u)),

and h ∈ C0(Ωδ,R
q) satisfies ‖h‖C0 ≤ r, then |Cu + fε(u, h(u))|p ≤ ‖C‖|u|p +

|fε(u, h(u))|p ≤ ‖C‖δ + ε · 	max(δ, r)2. In order for h(π(h)) to be well-defined, we
now need only to choose ε such that ‖C‖δ + ε · 	max(δ, r)2 ≤ δ, which can be done.
The proof of Theorem 1 then goes through with this minor modification, and the re-
sulting fixed point of Gε is unique in the space of continuously differentiable functions.

4.5. Polynomial approximation. Let us remove the dependence of (4.2) on ε
for clarity and return to the fixed-point problem (3.6) directly, which we recall defines
a nonlinear operator G via

h(u) = Nh(Cu + f(u, h(u))) + g(u, h(u)) =: (Gh)(u),

where h(0) = 0, dh(0) = 0.(4.20)

Proposition 1. Suppose that h ∈ Ck(Ωδ,R
q) is a solution of (4.20), and suppose

that h ∈ Ck(Ωδ,R
q) satisfies

h(u) −G(h)(u) = e(u), h(0) = 0,

where e is a given Ck function that satisfies e(0) = 0, de(0) = 0, . . . , dke(0) = 0. Then

|h(u) − h(u)|q = o(|u|kp) as u → 0.

Proof. If we define the function Δ := h− h, then we have to prove that

Δ(0) = 0, dΔ(0) = 0, . . . , dkΔ(0) = 0,

and the result then follows from the basic properties of the derivative. Clearly Δ(0) =
0, and differentiating (4.20) with respect to u gives

dh(u) = Ndh(Cu + f(u, h(u)))[C + duf(u, h(u)) + dvf(u, h(u))[dh(u)]]

+ dug(u, h(u)) + dvg(u, h(u))[dh(u)],
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and similarly,

dh(u) = Ndh(Cu + f(u, h(u)))[C + duf(u, h(u)) + dvf(u, h(u))[dh(u)]]

+ dug(u, h(u)) + dvg(u, h(u))[dh(u)] + de(u).

As a result, because h(0) = h(0) = 0, we find that

dΔ(0) = NdΔ(0)[C] + de(0) = NdΔ(0)[C],

by the assumption that de(0) = 0, so that

dΔ(0) = NdΔ(0)[C] = N2dΔ(0)[C2] = · · · = NνdΔ(0)[Cν ] = 0.

Continuing in a similar vein, we obtain

d2h(u) = Nd2h(Cu + f(u, h(u)))[C + duf(u, h(u))

+ dvf(u, h(u))[dh(u)]](2) + d2
uug(u, h(u)) + 2d2

uvg(u, h(u))[I, dh(u)]

+ d2
vvg(u, h(u))[dh(u), dh(u)] + dvg(u, h(u))[d2h(u)],

with a similar expression for d2h(u), with the additional presence of the term d2e(u).
We find that

d2h(0) = Nd2h(0)[C,C] + d2
uug(0, 0),(4.21)

and, because d2e(0) = 0, (4.21) also holds with h(0) replaced by h(0). We deduce
that the bilinear form d2Δ(0) satisfies

d2Δ(0)[X,Y ] = Nd2Δ(0)[CX,CY ] (∀X,Y ∈ R
p),

so that

d2Δ(0)[X,Y ] = Nνd2Δ(0)[CνX,CνY ] = 0 (∀X,Y ∈ R
p).

We omit the details, but by continuing inductively and assuming dje(0) = 0, one
obtains the result that the j-linear form djΔ(0) satisfies

djΔ(0)[X1, X2, . . . , Xj ] = NdjΔ(0)[CX1, CX2, . . . , CXj ]

for all X1, . . . , Xj ∈ R
p. The nilpotency of N now ensures that the latter quantity is

zero.
A simple corollary to Proposition 1 is that if (4.20) has two infinitely differentiable

solutions h and h defined on some neighborhood of zero, then they agree beyond all
orders at zero:

lim
u→0

|h(u) − h(u)|q
|u|kp

= 0 (∀k ≥ 1).
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5. Applications.

5.1. Nonlinear normal form. The first application of Theorem 1 is the fol-
lowing result, which says that (1.1) induces a local dynamical system on a manifold
in the sense of Definition 2. Recall the definition of the matrix pencil (A,B) via

(A,B) := (dzF (0, 0), dzF (0, 0)),

where F has (z, z) as its argument, and note that the following matrix pencil defined
on R

2m:

(A,B) :=

((
I 0
0 0

)
,

(
0 I
B A

))
,

satisfies σ(A,B) = −σ(A,B).
Theorem 2 (nonlinear Kronecker normal form). Let α ∈ [0, 1), and suppose that

(A1)–(A3) hold; then there is a linear space K1 and a C1+α-manifold M modeled on
K1 such that dim(K1) = #σ(A,B) and

1. for all (z, w) ∈ M there results F (z, w) = 0,
2. there is an r′ such that for each (z, w) ∈ M, with ‖(z, w)‖ < r′, there is a

unique (z, w) ∈ M such that w = z, and
3. there is a C1+α-diffeomorphism θ : K1 → M such that if (z, w) = θ(u) for

some u ∈ K1, then (z, w) = θ(ϕ(u)), where

ϕ(u) = Cu + p(u)

for some linear map C : K1 → K1 that satisfies σ(C) = σ(A,B). Moreover,
p : Bδ(0;K1) → K1 satisfies p(0) = 0 and dup(0) = 0.

Proof. From Theorem 1, first identify the linear space K1 from the KNF of (A,B)
with R

p and K2 with R
q. Now define the C1+α-graph

M̂ := {(u, h(u)) ∈ R
p ⊕ R

q : u ∈ Ωδ},

and let the r-neighborhood of zero in M̂ be M̂r := {(u, h(u)) ∈ R
p ⊕ R

q : |u|p < r}
whenever r < δ.

As a consequence of Theorem 1, there is an r > 0 such that for each (u, v) =
(u, h(u)) ∈ M̂r we can find a pair (u, v) given by (u, h(u)) ∈ M̂ such that (NF) is
satisfied:

u = Cu + f(u, v), Nv = v − g(u, v),

where C is obtained from the KNF of (A,B) so that σ(C) = −σ(A,B) = σ(A,B).
Let ϕ(u) := Cu + f(u, h(u)), and for each u ∈ R

p of sufficiently small norm set

θ(u) := Q(u, h(u)) and M ≡ Q(M̂), Mr ≡ Q(M̂r),

where the linear map Q is taken from the KNF of (A,B) from the discussion that
immediately follows (3.4). The map θ then provides a local diffeomorphism between
Ωδ and M; moreover both

F (θ(u)) = 0 and F (θ(ϕ(u))) = 0
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follow by the construction of h. The following diagram illustrates how a map is
induced on M in this way:

Mr −→ M
θ−1 ↓ ↑ θ

Ωr
ϕ−→ Ωδ

,

where θ−1(Q(u, h(u))) = u, and this concludes the proof.
The following immediate corollaries of Theorem 1 provide some information re-

garding the stable and unstable behavior of orbits in a neighborhood of a fixed point
of (1.1).

Corollary 1. Suppose that F satisfies (A1)–(A3) and (A,B) is a regular matrix
pencil with ρ(A,B) < 1; then there is a C1+α-solution manifold M of (1.1) containing
0 such that each (z, z) ∈ M supports a global orbit (zn)∞n=0 with (zn, zn+1) ∈ M, z0 =
z, z1 = z, and limn→∞ zn = 0.

Proof. The orbit is constructed by iterating the map ϕ(u) = Cu + p(u) given in
part 3 of Theorem 2: Because ρ(A,B) < 1 we have ρ(C) < 1 so that ϕ is a contraction
near the origin in some norm, and the result follows.

The following are the natural definitions of stable and unstable sets associated
with fixed points of (1.1); note that they are subsets of R

2m and not R
m.

Definition 4. The set

W s
loc(0) := {(z, z) ∈ R

2m : ∃ global orbit (zn)∞n=0, z0 = z, z1 = z, lim
n→∞

zn = 0}

is the local stable set associated with the zero fixed point of (1.1), and

Wu
loc(0) := {(z, z) ∈ R

2m : ∃ global orbit (zn)−∞
n=0, z−1 = z, z0 = z, lim

n→−∞
zn = 0}

is the local unstable set.
In case σ(A,B) contains elements outside the unit disk, one can apply the stable

manifold theorem for maps to ϕ in Theorem 2 to give the following result.
Corollary 2. Suppose that (A1)–(A3) are satisfied and (A,B) possesses ns

eigenvalues in the open unit disk; then (1.1) possesses a subset of the local stable set
which is a differentiable manifold of dimension ns.

There is an analogous corollary to show that the unstable set is nonempty and
contains a manifold of dimension nu, where nu is the number of elements of σ(A,B)
lying outside the closed unit disk. This result is obtained by applying Corollary 2 to
(1.1) but with time running backwards.

Corollary 3. Suppose that (A1)–(A3) are satisfied and (B,A) possesses nu

eigenvalues in the open unit disk; then (1.1) possesses a subset of the local unstable
set which is a differentiable manifold of dimension nu.

Proof. Let us rewrite (1.1) in the form

F (zn−1, zn) = 0(5.1)

to emphasize the fact that we are seeking an orbit that propagates backwards in time,
with (z−1, z0) given. The linearization of (5.1) is of the form

Bzn−1 + Azn

and if detB �= 0, then we may locally solve (5.1) for zn−1 = f(zn), and then one can
apply the stable manifold theorem for maps to this.
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On the other hand if detB = 0, then conditions (A1)–(A3), appropriately modi-
fied by exchanging the roles of z and z because time is flowing backwards, still apply
to (5.1) because (B,A) is a regular matrix pencil due to the fact that (A,B) is regular.
The result then follows from Corollary 2.

As A is a singular mapping it follows that the finite spectrum of (B,A) satisfies

σ(B,A) = (σ(A,B)\{0})−1 ∪ {0},

whether or not B is singular, and hence σ(B,A) contains zero so that nu ≥ 1. An
unstable manifold therefore always exists for (1.1) under conditions (A1)–(A3).

5.2. Bifurcation theorems. We now consider a Ck-mapping F : R
2m × R →

R
2m, where k ≥ 5, and examine the family of difference equations

F (zn, zn+1, μ) = 0.(5.2)

Define the one-parameter family of matrix pencils

P(μ) := (A(μ), B(μ)) := (dzF (0, 0, μ), dzF (0, 0, μ)),

where F has (z, z, μ) as its argument.
Theorem 3 (parameterized nonlinear KNF). Suppose that (0, 0) is a fixed point

of (5.2) for all μ ∈ R and that P(0) is a regular matrix pencil. Then there is a linear
space K1 and a C1+α-parameter family of C1+α-manifolds Mμ modeled on K1 such
that dim(K1) = #σ(P(0)) and

1. for all (z, w) ∈ Mμ there results F (z, w, μ) = 0,
2. there is an r′ (independent of μ) such that for each (z, w) ∈ Mμ, with

‖(z, w)‖ < r′, there is a unique (z, w) ∈ Mμ such that w = z, and
3. there is a C1+α-parameter family of C1+α-diffeomorphisms θμ : K1 → Mμ

such that if (z, w) = θμ(u) for some u ∈ K1, then (z, w) = θμ(ϕ(u, μ)), where

ϕ(u, μ) = C(μ)u + p(u, μ).

Moreover, C(·) is a C1+α-parameter family of maps in BL(K1) and, for some
δ > 0, p : Bδ(0;K1) ×Bδ(0; R) → K1 satisfies

p(0, μ) ≡ 0, dup(0, μ) ≡ 0.

4. If λ : [−δ, δ] → C is a continuous (and so bounded) curve, then λ(μ) ∈
σ(P(μ)) for all μ ∈ [−δ, δ] if and only if λ(μ) ∈ σ(C(μ)) for all μ ∈ [−δ, δ].

Proof. Consider the suspended difference equation

(S)

⎧⎨
⎩

μn+1 = μn,
zn+1 = wn,

0 = F (zn, wn, μn).

Let us write

F (z, w, μ) = A(μ)w + B(μ)z + F(z, w, μ),

where F (0, 0, μ) = 0, dzF (0, 0, μ) = B(μ), and dwF (0, 0, μ) = A(μ), and then consider
the following matrix pencil on R

2m:

(A,B(μ)) :=

((
I 0
0 0

)
,

(
0 I

B(μ) A(μ)

))
.
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This satisfies σ(A,B(μ)) = −σ(P(μ)) and is a regular matrix pencil when μ = 0, and
we can exploit this fact using the resulting Kronecker normal form to put (S) into a
normal form. If we set z = (z, w), then we may write (S) as

μ = μ,

Az = B(μ)z + F(z, μ),

where an overbar is used to denote a forward iterate. Now there is a matrix pair
(P,Q) such that PAQ = ( IK1

0
0 N

) and PB(0)Q = ( C 0
0 IK2

), where Q : R
2m →

K1 ⊕K2 = R
p+q and N is nilpotent. With (u, v) := w = Qz ∈ K1 ⊕K2, we obtain

μ = μ,(5.3)

u = α(μ)u + β(μ)v + G1(u, v, μ),(5.4)

Nv = γ(μ)u + δ(μ)v + G2(u, v, μ),(5.5)

where

α : K1 → K1, β : K2 → K1, γ : K1 → K2, and δ : K2 → K2

are differentiable linear maps in μ, and

α(0) = C, β(0) = 0, γ(0) = 0, and δ(0) = IK2 ,

where C ∈ BL(K1) is provided by the KNF of P(0) and σ(C) = −σ(A,B(0)) =
σ(P(0)). Moreover, G1 and G2 represent O2(u, v)-functions parameterized by μ.

Seeking an invariant manifold on which v = h(u, μ), we put (5.3)–(5.5) into the
form

μ = μ,(5.6)

u = Cu + O2(u, v, μ),(5.7)

Nv = v + O2(u, v, μ),(5.8)

where O2(u, v, μ) denotes a function of (u, v, μ) which vanishes to second or higher
order at the origin. From Theorem 1 we obtain a local invariant manifold of (5.6)–
(5.7) on which v = h(u, μ). Moreover h(0, 0) = 0, dh(0, 0) = 0, and we may assume
that h is C1.

It follows that h(u, μ) satisfies the functional equation

Nh(αu + βh(u, μ) + G1(u, h(u, μ), μ)) = γ(μ)u + δh(u, μ) + G2(u, h(u, μ), μ),

and if we set x = h(0, μ), then x satisfies the equation

Nh(βx + G1(0, x, μ), μ) = δ(μ)x + G2(0, x, μ).

The latter is an algebraic equation for x which we denote a(x, μ) = 0; moreover
a(0, μ) = 0 holds for all μ near 0, whence h(0, μ) ≡ 0. In addition, a short calculation
shows that

dxa(0, μ) = δ(μ) −Nduh(0, μ)[β(μ)],

which is an identity mapping when μ = 0. The implicit function theorem now ensures
that x = 0 is the only solution of a(x, μ) = 0 for all μ near 0.
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The functional equation satisfied by duh(u, μ) is then

−Nduh(αu + βh + G1(u, h, μ))[α + βduh + duG1 + dvG1 · duh]

+ γ + δduh + duG2 + dvG2 · duh = 0,

where various arguments have been omitted for brevity. If we write τ for the linear
map duh(0, μ), then

γ(μ) + δ(μ)τ = Nτ · [α(μ) + β(μ)τ ].

This is a Riccati equation for τ that can be solved near μ = 0 for τ as a function of
μ using the implicit function theorem and the properties of α, β, γ, and δ. The result
that τ(0) = 0 then follows because N is nilpotent and τ(0) = Nτ(0)[C].

We are now in a position to define the one-parameter family of matrices, denoted
by C(μ) in the statement of the theorem, namely,

C(μ) := α(μ) + β(μ)τ(μ),

so that C(0) = C. If C(μ) has an eigenvalue λ, say, then

(α + βτ)w = λw =⇒ γ + δτ = Nτ · [λw],

whence [
α β
γ δ

] [
w
τw

]
= λ

[
w

N · τw

]
,

and therefore

−λ ∈ σ

([
I 0
0 N

]
,

[
α β
γ δ

])
= σ(A,B(μ)) = −σ(P(μ)).

We have deduced that

σ(α(μ) + β(μ)τ(μ)) ⊆ σ(P(μ)),

but the left-hand side of this inclusion has dim(K1) elements counted according to
algebraic multiplicity, whereas the right-hand side may have more unless, that is,
μ = 0, in which case the inclusion is replaced by an equality because σ(α(0)) =
σ(C) = σ(P(0)).

As a result, if λ(μ) ∈ C([−δ, δ],C) is a continuous path of eigenvalues of P(μ), then
by virtue of the fact that λ(0) ∈ σ(α(μ) + β(μ)τ(μ)|μ=0), it follows by the continuous
dependence of eigenvalues on μ and by counting their location in the complex plane
that λ(μ) ∈ σ(α(μ) + β(μ)τ(μ)|μ
=0).

Conclusion 4 of Theorem 3 is not equivalent to saying that a locus of eigenvalues
of P(μ) is necessarily a locus of eigenvalues of C(μ). This is because P(μ) may have
other eigenvalues for small μ which become unbounded as μ tends to zero, and such
curves cannot correspond to eigenvalues of C(μ). This happens, for instance, in the
singularity-induced bifurcation theorem from [1] because an eigenvalue has a pole with
respect to the bifurcation parameter.
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5.2.1. Existence of bifurcations for (1.1). One can easily prove a period-
doubling bifurcation theorem for (1.1) without having recourse to the nonlinear normal
form given in Theorem 2, but we now include this result for completeness.

Theorem 4. Suppose that (5.2) satisfies the following hypotheses:
1. 1 �∈ σ(P(0)) and F (0, 0, μ) ≡ 0,
2. ker(−A(0) + B(0)) = 〈k〉, so that −1 ∈ σ(P(0)), and
3. B′(0)k �∈ im(−A(0) + B(0)).

Then μ = 0 is a period-doubling bifurcation point for (5.2) from the trivial solution
z = 0.

Proof. Consider the algebraic equation G(z, w, μ) = 0, where G : R
2m+1 → R

2m

is given by

G(z, w, μ) :=

[
F (z, w, μ)
F (w, z, μ)

]
,

and moreover G has the trivial solution branch. Also define G(z, μ) := F (z, z, μ), so
that

d(z,w)G(0, 0, μ) =

[
A(μ) B(μ)
B(μ) A(μ)

]
,

and dzG(0, μ) = A(μ)+B(μ). By assumption, A(0)+B(0) is invertible, and therefore
dzG(0, μ) is an invertible map for small |μ|, so that if G(z, w, μ) = 0 near μ = 0, then
z �= w unless z = w = 0. The theorem now follows from the simple eigenvalue
bifurcation theorem applied to G at μ = 0, noting that the kernel of d(z,w)G(0, 0, 0)
is (k,−k)T .

One can of course formulate a similarly straightforward fold bifurcation for (1.1)
in an entirely analogous fashion. However, the following theorem relies on Theorem 3
in a nontrivial way.

Theorem 5 (Neimark–Sacker bifurcation). Suppose that (5.2) has the fixed point
z = 0 for all μ ∈ R and that λ(μ) ∈ σ(P(μ)) is a curve which satisfies the following:

1. P(0) is a regular matrix pencil;
2. |λ(0)| = 1, and λ(0) is an algebraically simply eigenvalue of P(0);
3. λ(0)n �= 1 for n ∈ {1, 2, 3, 4};
4. d

dμ |λ(μ)|
∣∣
μ=0

�= 0.

Then modulo a further nonresonance condition1 there is a half-interval J ⊂ R con-
taining 0 in its closure such that (5.2) possesses a quasi-invariant circle Γμ ⊂ R

2m

for all μ ∈ J . Moreover, if diam(Γμ) = sup{‖z − w‖ : z, w ∈ Γμ}, then limμ→0

diam(Γμ) = 0.
Proof. Theorem 5 follows immediately from the Neimark–Sacker bifurcation for

maps applied to ϕ(u, μ) from Theorem 3 (part 3).

6. Examples. Example 1 (output-nulling control problem). The results in this
paper give sufficient conditions for a positive answer to the following question:

(Q) Given f(= f(x, u)) : R
n+m → R

n, g(= g(x)) : R
n → R

m such that f(0, 0) =
0, g(0) = 0, does there exist a sequence of states (xn) given by the iterates of
f and controls (un) such that g(xn) ≡ 0 and xn → 0 as n → ∞?

Thus, we seek a global orbit of the ΔAE

xn+1 = f(xn, un), g(xn) = 0.

1See [21] or [25, p. 376], where the open condition “a �= 0” is given, and this requires the
computation of third-order terms in the normal form for this bifurcation.
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A necessary condition for the existence of such a solution can be obtained by sub-
stituting the dynamic part of the problem into the constraint, to give the hidden
constraint

g(f(xn, un)) = 0 (∀n ≥ 1).

Hence, provided the function g(f(x, u)) has an invertible partial u-derivative at
(x, u) = (0, 0), by the stable manifold theorem the response to (Q) is affirmative if the
spectrum of the x-derivative of f(x, U(x)), also evaluated at (x, u) = (0, 0), contains
an element of the open unit disk. Here U(x) denotes the solution of the equation
g(f(x, U)) = 0 given locally by the implicit function theorem. Note for a moment
that if the stated u-derivative dg(0)duf(0, 0) is invertible, it follows that the matrix
pencil

(A,B) :=

((
Ix 0
0 0

)
,

(
dxf duf
dg 0

))∣∣∣∣
(x,u)=(0,0)

is regular, and thus (A1)–(A3) hold for this problem.
However, by using Theorem 1 one can dispense with the condition that dg(0)duf(0,

0) is invertible. In fact, let us assume that K := ker(dg(0)duf(0, 0)) �= {0}. In this
case, the matrix λA+B is invertible if −λ �∈ σ(dxf(0, 0)) and dg(λIx + dxf)−1duf is
also invertible at (x, u) = (0, 0). However, for λ large we have

λ2dg(λIx + dxf)−1duf = λdg(Ix + λ−1dxf)−1duf

= λdg(Ix − λ−1dxf + O(λ−2))duf

= λ dg · duf − dg · dxf · duf + O(λ−1),

evaluating all of the stated derivatives at (x, u) = (0, 0). As a result, if the weaker
condition holds that the pencil (dg ·duf, dg ·dxf ·duf) is regular, then (A,B) is regular
and (A1)–(A3) still apply. The response to (Q) is again affirmative if σ(A,B) contains
at least one member of the open unit disk.

In fact one can show that output-nulling control problems are well-posed in se-
quence spaces as follows. First consider the linear problem

Azn+1 + Bzn = Γn,(6.1)

where n ∈ N and (Γn) is a given sequence in

	∞
N

(Rm) =

{
(zn)n∈N : zn ∈ R

m, sup
n∈N

‖zn‖Rm < ∞
}
,

but detA = 0. If (A,B) is a regular matrix pencil with index ν, the KNF allows us
to write (6.1) in the form

un+1 = Cun + αn,(6.2)

Nvn+1 = vn + βn,(6.3)

where (un, vn) ∈ R
p+q. In order to solve (6.1), let us consider the linear operator

I − Nσ on a space of sequences 	∞
N

(Rq). We take linear maps T ∈ BL(Rq) to act
pointwise on 	∞

N
(Rq), so

T (wn)n∈N = (Twn)n∈N (∀(wn)n∈N ∈ 	∞
N

(Rq)),
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and we define σ the forward-shift map by

σ(wn)n∈N = (wn+1)n∈N (∀(wn)n∈N ∈ 	∞
N

(Rq)).

Any such T will commute with σ, and one can see by a direct multiplication that

(I −Nσ)

ν−1∑
i=0

N iσi = I,

where I denotes the identity on 	∞
N

(Rq).
One can solve (6.2) in a suitably weighted sequence space if no restrictions are to

be placed on the spectrum of (A,B). Equation (6.3) can also be solved:

v = −(I −Nσ)−1β = −
ν−1∑
i=0

N iσiβ,

where v = (vi)i∈N and β = (βi)i∈N, whence

vn = −
ν−1∑
i=0

N iβn+i.

So from a temporal point of view the current values of the state depend on future
values of the input, but (6.1) is still well-posed in a sequence space as v depends
continuously on β.

This means that a second- or higher-order nonlinear perturbation of (6.1),

Azn+1 + Bzn + F(zn) = Γn,(6.4)

say, where F(0) = 0, dF(0) = 0, can be written as an infinite-dimensional problem

(Aσ + B)z + F(z) = Γ(6.5)

in 	∞
N

(Rm), and one can apply the inverse function theorem to solve locally for small-
norm solutions of the form z = z(Γ), where z(0) = 0.

This solution can be found via the Picard iteration z(Γ) = limn→∞ y(n), where
y(0) = 0 and

y(n+1) = −(Aσ + B)−1[F(y(n)) − Γ].

As a result, writing the solution sequence z(Γ) as (zn(Γ))n∈N, it is clear that the
nonlinear perturbation will have the effect of making each zn depend on infinitely
many elements of the sequence Γ, unless ν happens to equal 1.

This effect has been observed before in the literature in the context of delay DAEs
[5, 13], where it is noted in the former reference that linear systems of delay DAEs
can act like advanced systems when their index is two or higher. The problem (6.5)
is displaying exactly this behavior.

Example 2. This example serves to illustrate how we can use Theorem 1 to deduce
qualitative similarities between a DAE and its discrete counterpart. Take the DAE

ẋ = f(x, y),(6.6)

g(x, y) = 0,(6.7)
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subject to x ∈ R
n, y ∈ R

m with an equilibrium at the origin, so that f(0, 0) =
0, g(0, 0) = 0. Let us impose a singularity of the form

ker(dyg(0, 0)) = 〈k〉 such that dyf(0, 0)dxg(0, 0)k �∈ im(dyg(0, 0)),(6.8)

and the equilibrium solution is isolated:

det

(
dxf(0, 0) dyf(0, 0)
dxg(0, 0) dyg(0, 0)

)
�= 0.

From [2] it is known that (6.6)–(6.7) has an invariant manifold W of dimension n− 1
that contains the origin and intersects the singularity in an n−2-dimensional manifold
of pseudoequilibria.

Now consider the forward-Euler method in state-space form [8, p. 375] applied to
(6.6)–(6.7), resulting in the difference equation

xi+1 − xi = hf(xi, yi),(6.9)

g(xi+1, yi+1) = 0.(6.10)

Using Theorem 1, in order to to show that (6.9)–(6.10) possesses a quasi-invariant
manifold of solutions Wh that contains the origin and has dimension n − 1, we need
only show that (A1)–(A3) hold, which entails showing that the derivative at the origin
of (6.9)–(6.10) is a regular matrix pencil. Hence we seek a ξ ∈ C such that

det

(
ξ

[
I 0

dxg dyg

]
+

[
I + hdxf hdyf

0 0

])∣∣∣∣
(x,y)=(0,0)

�= 0.

However, the conditions in (6.8) ensure the existence of such a ξ for any fixed h �= 0,
and the existence of Wh follows. The dimension of Wh comes from counting the
number of finite eigenvalues of the linearization of (6.9)–(6.10) which is given in [1]
as n− 1.

Example 3. Consider again (6.6)–(6.7) but now with a parameter α

ẋ = f(x, y, α), g(x, y, α) = 0,(6.11)

and suppose that (x, y) = (0, 0) is an equilibrium locus for all α ∈ R. Now suppose
that the conditions for a Hopf bifurcation are formally satisfied by (6.11) at α = α0:
ω(α) ∈ σ(M,−L(α)) is a locus of algebraically simple eigenvalues, where

M =

[
I 0
0 0

]
, L(α) =

[
dxf(0, 0, α) dyf(0, 0, α)
dxg(0, 0, α) dyg(0, 0, α)

]
;

and ω(α0) = iω0 is an eigenvalue of (M,−L(α)) such that d
dα�(ω(α))

∣∣
α=α0

is non-

zero. Also, no other eigenvalues of the regular matrix pencil (M,−L(α0)) have a zero
real part.

Then, modulo an open condition on the third-order derivatives of the smooth functions
f and g, we can show that the backward-Euler method

xi+1 − xi = hf(xi+1, yi+1),(6.12)

−h · g(xi+1, yi+1) = 0,(6.13)
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satisfies the conditions of the Neimark–Sacker bifurcation theorem for all sufficiently
small h > 0. Note that (M − hL(α),−M) is the linearization of (6.12)–(6.13) about
the zero fixed point and is a regular matrix pencil for h > 0 and α ≈ α0 such that

(1 − hω(α))−1 ∈ σ(M − hL(α),−M) (∀α).

In order to apply Theorem 5 to (6.12)–(6.13) we first note that the eigenvalue
locus (1 − hω(α))−1 has unit length if and only if 1 − hω(α) has unit length. If we
define functions R(α) and I(α) by ω(α) = R(α) + iI(α), then |1 − hω(α)| = 1 if and
only if (1 − hR(α))2 + h2I(α)2 = 1, which holds when

h

(
−R(α) +

h

2
(R(α)2 + I(α)2)

)
= 0.(6.14)

As a result, we define the function b(α, h) := −R(α) + h
2 (R(α)2 + I(α)2) and

note that b(α, h) = 0 for h > 0 ensures that the linearization of (6.12)–(6.13) at (0, 0)
has an eigenvalue of unit modulus. Now b(α0, 0) = 0 and ∂b

∂α (α0, 0) = −R′(α0) �= 0
by assumption, and, as a result, one may solve b(α, h) = 0 locally using the implicit
function theorem for α = α(h) such that α(0) = α0.

From this calculation one can show that the numerical scheme (6.12)–(6.13) has

a quasi-invariant circle for α in some half-neighborhood of α(h) = α0 +
hω2

0

R′(α) +O(h2)

provided h > 0 is sufficiently small.
Note that no assumption is made regarding the invertibility of dyg(0, 0, 0). If

this mapping were invertible in addition to the formal conditions given above for
Hopf bifurcation, then the existence of a locus of periodic solutions of (6.11) could be
deduced. However, without the invertibility of dyg(0, 0, 0), it is not known whether
a Hopf bifurcation occurs in (6.11), but (6.12)–(6.13) has a locus of invariant circles
nevertheless.

6.1. Concluding remark. The results in this paper can be used to show that
second-order problems of the form

F (zn, zn+1, zn+2) = 0(6.15)

have quasi-invariant manifolds provided that the appropriate matrix pencil is regular
simply by rewriting (6.15) as a first-order problem. However, the methods of this
paper do not easily extend to the study of invariant manifolds of the system that one
would like to study if (1.1) had a period-2 orbit (z, w, z, w, . . .), namely, the system

F (zn, zn+1) = 0,(6.16)

F (zn+1, zn+2) = 0,(6.17)

where F (z, w) = 0 and F (w, z) = 0, with w �= z. Another approach is needed to
answer the question of whether overdetermined systems of this type have any invariant
manifolds associated with them.
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